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Abstract

We consider auctions for procurement contracts involving exogenous production risk and
whose payment rule depends not only on actual production but also on self-reported expected
production. We first establish a conflict between insurance provision and strategy-proofness.
We then analyze equilibrium bidding behavior under several paradigms regarding bidders’
ability to misreport their expected production: Payment rules that are manipulable could
produce rents for strategic bidders which may overwhelm the benefits from reduced risk pre-
miums thanks to insurance provision. We illustrate our results through simulations calibrated
on a few offshore wind power auctions in France and estimate that public spending could have
increased by 3% given that strategic bidders would benefit from overestimating their expected
production by more than 10%. Such potential losses are 15 times greater than the potential
benefits from reduced risk premiums under truthful reporting. We also introduce variants of
the French rule with punishments intended to discourage misreporting, and find limited room
for improving linear contracts. Various extensions of our baseline model are discussed.
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1 Introduction

The transition towards low-carbon economies has led many countries to support renewable energy
sources of electricity (RES-E) on a large scale, especially wind and solar power. This support often
involves subsidy contracts awarded to RES-E projects through auctions.1 These can be regarded
as standard procurement contracts through which public authorities buy green electricity, and
which involve various risks for the producer. In general, when producers are more risk averse
than the public decision-maker, designing Public–Private Partnerships such that producers bear a
smaller share of these risks reduces risk premiums (Engel, Fischer and Galetovic (2013)), and thus
in our case may help to develop RES-E at a lower cost (Cantillon, 2014). As an example, Engel,
Fischer and Galetovic (2001) plead for least-present-value-of-revenue auctions where the franchise
terms adjust to demand realizations: according to their estimates for a highway franchising project
in a developing country, such contracts could reduce public spending by more than 20% compared
to the widespread fixed term contracts where contractors bid on tolls.

RES-E are often subsidized through Feed-in-Tariffs (FiT) where producers receive a fixed sub-
sidy for each MWh produced. Producers’ revenue is thus proportional to the quantity produced,
even though wind and solar electricity generation does not involve variable costs. Henceforth, FiT
contracts make producers’ revenues highly dependant on the quantity produced, which is in turn
highly dependant on weather conditions. As argued by Cantillon (2014), economic theory calls
for reducing producers’ exposure to risks over which they have no control, such as the weather,
while risks over which they have some control call for contractual arrangements that trade off the
benefits of risk sharing with incentive provision. Incentivizing producers to make ex ante efforts
to upgrade production (e.g. through turbine model selection) is the main rationale for using FiT
contracts instead of capacity (or investment) subsidies: the latter fully eliminate both risk expo-
sure and incentives to maximize production.2 Nevertheless, once the RES-E capacity is built and
connected to the electricity network, producers have no control over the quantity produced which
they then view as an exogenous risk. For wind farm projects, this risk is not negligible since the
standard deviation of the yearly production could represent at least 10% of the mean production
(Newbery, 2012) but also and mainly because until recently wind power forecasting suffered from
an important over-prediction bias.3 Some countries – including Brazil, France and Germany –
have departed from (standard) linear FiT and adopted contract designs (henceforth referred to as
“payment rules”) where wind farm revenue is made less sensitive to production variations within

1In 2019, an estimated 115 GW (resp. 60 GW) of solar PV (resp. wind power) capacity was installed worldwide.
RES-E subsidies were awarded through auctions in 48 countries according to REN21’s 2020 global status report
(www.ren21.net/wp-content/uploads/2019/05/gsr_2020_key_findings_en.pdf).

2Huenteler et al. (2018) analyze the performance of wind farms and argue that the huge gap between US and
China is driven by factors that are related to efforts made by the producers.

3See Lee and Fields (2020) for a survey.
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an interval around the reported reference production. For instance, the payment rule for early
offshore wind auctions in France was designed in a way that makes producers’ yearly revenues
almost insensitive to the annual quantity produced within +/- 10% around a reference production
reported by the producers themselves. We presume that the rationale for such a risk sharing
agreement was to lower the risk premiums producers include in their bids, and thus to reduce
public spending.

However, such designs open the door to strategic behavior, in particular when letting producers
freely self-report their reference production.4 We formalize and analyze this pitfall through a model
where a set of firms compete for a procurement contract in which the buyer’s total payment is
a function of the contractor’s per-unit price bid, of its actual production (whose realization is
determined after the auction) and of the reference production as reported in the contractor’s bid.
We call linear contracts the rules where the total payment is equal to the per-unit price bid times
the actual production. The winning firm is selected on the sole criterion of its per-unit price bid,
regardless of the reported reference production. We then consider two kinds of firms: those that
are constrained to report their expected production truthfully and those that are entirely free –
at no cost – to make any possible report. The former (resp. latter) firms are called truthful (resp.
strategic).

We introduce the class of so-called production-insuring payment rules which we define as the
rules such that the buyer’s expected cost is the same as in the linear contract while the expected
utility of any risk averse contractor is greater for any symmetric production distribution and any
given per-unit price, and provided that the reference production matches the expected production.
However, the buyer’s expected cost depends on the chosen payment rule insofar as the per-unit
price results from a competitive auction. Under truthful reporting, a production-insuring payment
rule incurs (by definition) lower risk premiums compared to the linear contract. These will be
reflected in lower equilibrium price bids placed by the firms, and consequently in a lower expected
cost for the buyer.

Production-insuring payment rules seem to be a salient choice for risk neutral buyers facing
risk averse firms as they certainly represent an improvement over the linear contract when all
firms are truthful. Our research question is then to analyze the performance of such rules if we
depart from the assumption that all bidders are necessarily truthful.

As a preliminary, we analyze the incentives of strategic firms to misreport their expected pro-
duction. We formalize a fundamental conflict between insurance provision and strategy-proofness:
for any given production-insuring payment rule and any given symmetric single-peaked distribu-

4E.g., in offshore wind farm auctions in France, the reference production was based on the firm’s own data and
calculation and there was thus no guarantee that this self-reported parameter would correspond to the expected
production.
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tion, risk neutral firms strictly benefit from stating a reference production greater than their
actual expected production. We also impose additional structure to analyze the incentives to
manipulate the payment rule under risk aversion and to derive some comparative statics. We
show in particular that risk aversion reduces the incentive to overstate the reference production.

Such deceptive behavior gives a comparative advantage to strategic firms. Furthermore, a
strategic firm overstating its reference production in its bid causes disappointment for the buyer
when it wins the auction: the effective per-unit price, i.e. the average ex post subsidy paid per
quantity produced, will be greater than the submitted price bid. With a production-insuring
payment rule, the effective per-unit price and the submitted price bid only match when the
winning firm reports its actual expected production as its reference production. Intuitively, the
larger the misreporting, the larger the discrepancy between the effective subsidy and the bid.

We then analyze the auction game when firms differ only regarding their ability to misreport
their reference production. We consider that all firms have the same production distribution, the
same costs and the same payoff function (capturing possible risk aversion). We first derive the
equilibria under complete information, depending on whether and how many firms are truthful or
strategic. Second, we derive the (mixed strategy) equilibrium when each firm is, independently of
the others, either truthful or strategic with some given probability. In all cases, we establish that
the presence of strategic firms produces a lower equilibrium price compared to the case where all
firms are truthful, but the buyer’s expected cost does not necessarily decrease, quite the contrary.

Production-insuring payment rules not being strategy-proof leads to two kinds of pitfalls to
which the linear contract is immune: a) Instead of evening out the firms’ revenue (as would be
the case under truthful reporting), a production-insuring payment rule could have exactly the
opposite effect, as illustrated in Section 2, and those risks are borne ultimately by the buyer
through an increased risk premium. b) Heterogeneity regarding the ability to misreport the
reference production leads to non-competitive rents. Informally, these rents increase with the
degree of heterogeneity: the highest buyer’s expected cost is reached when a single strategic firm
captures all the benefits from strategic misreporting. In the specific case where firms are risk
neutral the comparison is unambiguous: for any symmetric single-peaked production distribution,
the linear contract (strictly) outperforms any production-insuring payment rule provided that
there is a positive probability of having a single strategic firm.

We then use our RES-E application to illustrate those effects quantitatively. We consider the
production-insuring payment rule which was used in early offshore wind auctions in France and
calibrate the production risk distribution based on wind production simulations. For any realistic
degree of risk aversion, we find that the potential benefits from insurance provision are much lower
in magnitude than the potential losses due to misreporting. Furthermore we show that the largest
pitfall of production-insuring payment rules does not result from misreporting per se (since risk
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premiums are actually quite small) but rather from the non-competitive rents resulting from the
possible heterogeneity in the way bidders (mis)report their reference production. According to
our simulations with a coefficient of risk aversion equal to 1, the non-competitive rents accruing
to a single strategic firm exceed 3% of the buyer’s expected cost while the risk premiums barely
exceed 0.3%.

On the whole, this first step of our analysis can be viewed as a strong warning against
production-insuring rules: if the buyer is poorly informed about the distribution of production
risk such that it can not screen the reference production, then departing from linear contracts to
reduce risk premium seems quite a risky bet.

Last, we depart from our baseline model in two directions. First, we depart from production-
insuring payment rules and adopt the perspective of a sophisticated buyer who anticipates firms’
strategic behavior and can partially adapt its payment rule to the production risk. While only
imposing that the payment rule should be homogeneous of degree 1, we establish that it is impos-
sible to eliminate the risk premium with strategic bidders: for any given symmetric single-peaked
production distribution and any form of risk aversion, we cannot design a payment rule such that
strategic firms would be fully insured against production risk. Then, inspired by the payment
rules that have been used in some countries to subsidize wind farms, we analyze, using numeric
simulations, a class of payment rules that introduces on top of insurance provision some punish-
ments consisting of payment cuts in case actual production is too far removed from the reported
expected production. Heftier punishments reduce the incentives to misreport production, and
then a fine-tuning of these punishments could allow strategy-proofness to be restored and elim-
inate non-competitive rents. However, such payment rules could exacerbate the risk associated
with the lowest levels of actual production, producing effects on risk premiums and on the cost
for the buyer that are not clear-cut.

Second, we discuss the relevance of our results beyond our limited framework and question
more generally the benefits of departing from the linear contract: we start with a discussion on the
(non)optimality of the linear contract when firms are risk neutral in the presence of both moral
hazard and adverse selection, we then depart from the multiplicative payment rules we considered
where the remuneration is proportional to the price bid; we consider moral hazard meaning that the
winning firm can make some efforts ex post to upgrade its production distribution; we extend our
analysis to environments where production involves variable costs on top of the initial investment
cost; we briefly sketch how non-competitive rents would be modified if the asymmetry between
firms comes not only from the heterogeneity in terms of truthful/strategic behavior but also in
terms of cost and production distribution; last we discuss the case where misreporting is costly.
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Links with the literature

Like Eso and White (2004), we consider an auction setup where bids incorporate risk premiums
because the value of the good for sale, or equivalently the profit from the contract to be awarded,
suffers from an exogenous risk. However, the connection goes no further because Eso and White
(2004) do not consider contingent auctions but rather analyze –and compare– standard auction
formats and how informational rents interact with risk aversion.

Contingent auctions This paper contributes to the theoretical literature on contingent auc-
tions as surveyed by Skrzypacz (2013). Hansen’s (1985) seminal contribution shows that royalty
auctions leave lower informational rents to the winning bidder compared to cash-only auctions.
More generally, DeMarzo et al. (2005) introduce the concept of “steepness”, arguing that having
“steeper” securities reduces informational rents. Intuitively, the ranking of securities with respect
to the concept of “steepness” is related to risk sharing. In this vein, Abhishek et al. (2015) consider
a model with risk averse bidders and argue that steeper securities are beneficial not only because
they reduce informational rents but also because they provide more insurance and thus reduce
risk-premiums.

The empirical literature on auctions and procurement is also taking a growing interest in
auctions involving contingent contracts. Bhattacharya et al. (2018) consider auctions for oil tract
contracts and analyze the trade-off between the benefits for having higher royalties (reducing both
risk premiums and informational rents as argued above) and the losses resulting from inadequate
incentives to drill (or not) the tracts in an efficient manner. They estimate that the optimal royalty
rate is around 26% which is more than 50% higher than the one currently used in oil lease auctions.
The analog of this issue in procurement is the analysis of the performance of Fixed Price (FP)
contracts – where the contractor bears all the cost overruns – versus unit-price (UP) contracts
that specify a percentage of the observable costs that accrue to the buyer. In procurement for
transport infrastructure projects, Bolotnyy and Vasserman (2019) estimate that switching to a
FP contract would more than double public spending compared to a UP scaling auction where
producers are partially insured against cost overruns. For similar infrastructure projects, Luo
and Takahashi (2019) show that UP contracts are chosen by project managers more often than
FP contracts when the projects are more complex and thus more risky ex ante in terms of cost
overruns, suggesting that they are regarded as an appropriate risk management instrument.

In our setup, linear contracts correspond to cash-only auctions or FP contracts in the sense
that bidders perceive it as being the most risky. On the contrary, production-insuring payment
rules correspond to risk sharing agreements as with royalty contracts (to share the stochastic
benefits) or with UP contracts (to share the stochastic costs). The trade-off we analyze here is
different from what has been previously covered by this strand in the literature, as we leave aside
moral hazard to focus on an asymmetric information problem resulting in an opportunity to game

6



the auction rule thanks to the insurance-provision feature of the contract. This leads us to another
strand of the auction literature to which our work is related.

Bid manipulation/Gaming in auctions This paper contributes to the literature involving
flaws in the bid evaluation process, either because some bidders have opportunities to “game” the
auction rules or because the principal is corrupted and could deliberately misevaluate some bids
in exchange for a bribe.

Various contributions have investigated the benefits of individual manipulations where bidders
do not bid according to the “spirit” of the auction rules. We stress that such manipulations are
often legal but may not be available to all bidders either due to a lack of sophistication/rationality
or to a lack of information. These issues arise in complex environments, in particular when bids
are multi-dimensional.5 Yokoo et al. (2004) consider multi-object combinatorial auctions where
bidders can benefit from using multiple identities to bid in the auction.6 In scaling auctions, the
score of a bid is computed based on ex ante estimates of the various underlying quantities. If
bidders receive, ex ante, information about actual quantities, then they will benefit from skewing
their bids (Athey and Levin, 2001).7 In a related manner, Agarwal et al. (2009) discuss such
incentives and mention other manipulations in sponsored search auctions for online advertising.
Last, Ryan (2020) considers procurement auctions for coal power plants with a hedging instrument
against the hard coal future price. Bids are evaluated through a score combining a price bid and
an index of how much the firm wishes to be hedged against coal price variations. Ryan (2020)
shows that some firms prefer not to use the hedging instrument in order to increase their score,
having in mind their ability to renegotiate their contract in case of spikes in the price of coal. The
main insight from this literature is that heterogeneity between bidders’ abilities or opportunities
in gaming opens the door to welfare inefficiencies by selecting – instead of the firms with the lowest
cost – the best “manipulators” and/or to non-competitive rents accruing to those manipulators.
In this perspective, our strategic bidders are the analog of the firms who benefit the most from ex
post renegotiation in Ryan (2020) and of the firms who benefit the most from skewing their bids
in Luo and Takahashi (2019).

5The standard auction formats (that prevail in auction textbooks, e.g. Krishna (2002)) are immune to indi-
vidual gaming strategies, but not to collective manipulations which are referred to as collusion and have received
considerable interest (see for Correia-da-Silva (2017) for a survey).

6Such false-name bidding activity is sometimes referred to as shill bidding, a term that is also used for manip-
ulation by the seller consisting of bidding (possibly fraudulently) in the auction (Lamy, 2013) in order to increase
the selling price.

7In Athey and Levin’s (2001) bi-dimensional timber scaling auctions model, the optimal strategy of a risk neutral
bidder consists of bidding zero on the species whose percentage has been underestimated by the seller and paying
the Forest Service only for the overestimated species. Such extreme unbalanced bids are not observed in practice,
partly due to risk aversion (Athey and Levin, 2001). Bajari et al. (2014) mention another explanation: the risk
that a bid could be rejected when its skewness is too visible. Luo and Takahashi (2019) consider multidimensional
UP contracts and argue that bidders form their bid portfolios to balance their risks.
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In contrast to the literature on bid manipulations which take as exogenous which bidder(s)
can “game” the auction rules, the literature on corruption in auctions typically endogenizes the
set of bidders which are able to manipulate the bid evaluation process. Celentani and Ganuza
(2002) is thus a kind of exception in the literature on corruption by considering a model where
the dishonest principal that organizes the procurement is randomly matched to one of the firms
who will later benefit from the opportunity to deliver a good at a lower quality than specified in
its bid. This model is thus highly related to our bidding paradigm where there is a single strategic
firm. On the contrary, in Compte et al. (2005), firms compete ex ante through bribes to be the
favored bidder at the auction stage, while in Burguet and Che (2004) firms simultaneously submit
a bid and a bribe.

The remainder of the paper is organized as follows. Section 2 introduces the payment rule
used by the French government and some of its caveats. Section 3 presents our auction model
with production risk. The manipulability of production-insuring contracts is analyzed in Section 4.
Section 5 develops the equilibrium analysis of the auction game under several paradigms regarding
how bidders (mis)report their expected production. We come back to our empirical application
in Section 6: various estimates regarding the buyer’s expected cost under French rules compared
to the linear FiT are reported. The (possible) benefits from designs that do not fall into the
class of production-insuring payment rules are investigated in Section 7. Section 8 discusses the
relevance and robustness of our insights beyond our simple model through several extensions.
Section 9 concludes. Details of our simulations and the proofs of our main results are presented
in the Appendix while additional elements are available in an online Supplementary Appendix
(henceforth the SA).

2 French offshore wind auctions

In 2011 and 2013, the French government auctioned up to 4 GW of capacity through six offshore
wind farm projects.8 For each retained project, the feed-in-tariff (FiT) contract specifies the
yearly amount paid by the government to the winning firm as a function of its actual yearly
production (in MWh). The French payment rule differs from standard FiT linear contracts where
the payment is strictly proportional to total production: the yearly remuneration depends not
only on the auction-determined price (per MWh) and the amount of electricity produced during
the year, but also on how the latter compares to the reference production reported by the firms

8The auction and contract rules are provided (in French) by the French Energy Regulatory Com-
mision for both auction rounds from 2011 and 2013: www.cre.fr/Documents/Appels-d-offres/Appel-d-
offres-portant-sur-des-installations-eoliennes-de-production-d-electricite-en-mer-en-France-metropolitaine and
www.cre.fr/Documents/Appels-d-offres/Appel-d-offres-portant-sur-des-installations-eoliennes-de-production-d-
electricite-en-mer-en-France-metropolitaine2.
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in their bids.
Formally, let p denote the price bid of the winning firm, q0 the reported reference production

and qt the actual production in year t. According to the French payment rule, the firm’s revenue
for each year t can be expressed as p ·R(qt, q0) = p ·qt ·z( qtq0 ) where the function z : R+ → R+ with
z(1) = 1 is referred to as the correction factor. For a given price bid p, the solid (resp. dotted)
line in Figure 1a depicts the yearly subsidy according to the French payment rule (resp. the linear
contract) as a function of the actual production and on how it compares to q0.

To hedge firms against variation of qt, it is desirable to set the correction factor z(·) such
that the payment is higher (resp. lower) than it would have been under the linear payment rule
for the same per-unit price when the actual production stands below (resp. above) the reference
production, i.e. z( qtq0 ) ≥ 1 (resp. ≤ 1) if qt < q0 (resp. qt > q0). The French payment rule is
such that indeed z( qtq0 ) > 1 in the range [0.85 · q0, q0] and symmetrically z( qtq0 ) < 1 in the range
[q0, 1.15 · q0].9 The solid line in Figure 1b depicts the correction factor z( qq0 ) as a function of q0

the reference production. For a given price p, firms wish to generate higher correction factors. If
firms already knew ex ante their actual production q, then they would maximize their revenue
by overestimating production by about 11%. Thanks to this strategic misreporting, the subsidy
would increase by 10% compared to truthful reporting. This shift corresponds to the difference
between the slopes of the dashed and the dotted lines depicted in Figure 1a. We expect firms
overestimating incentives to extend to environments with production risk, at least when the risk
is small.

When the production is risky and if qmax > 0 denotes the upper bound of the distribution f ,
then a firm reporting qmax for the reference production is guaranteed that any production outcome
will generate a correction factor that is greater than 1. If qt is symmetrically distributed, note on
the contrary that the expected value of the correction factor under truthful reporting is equal to
one. This illustrates that strategic risk neutral firms, which should report a reference production q0

that maximizes E[z( qtq0 )], should misreport their expected production. More generally, we expect
that their optimal misreport consists of overestimating the expected production: it would more
often generate a favorable correction factor z( qtq0 ) > 1 (and less often a correction factor below
1). By optimizing their report q0, firms benefit from the effective feed-in-tariff p ·E[qtz(

qt
q0

)]/E[qt]

which is thus necessarily greater than p · E[qtz(
qt

E[qt]
)]/E[qt] the per-unit subsidy under truthful

reporting (the latter being equal to p if qt is symmetrically distributed10). The effective feed-in-
tariff is bounded above by p ·maxx≥0 z(x), a bound that is achieved when future production is
perfectly known ex ante and firms optimize their report q0.

9More specifically, the French rule is defined such that the function ε→ (1 + ε) · [z(1 + ε)− 1] is an odd function
which is null outside the [−0.15, 0.15] range and strictly negative for ε ∈]0, 0.15[.

10If qt is symmetrically distributed, then we have E[ qt
E[qt]

[z( qt
E[qt]

)− 1]] = 0 since the function ε→ (1 + ε)z(1 + ε)
is odd.
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Figure 1: Payment rule in French offshore wind auctions

(a) Payment to the firm (b) Correction factor z(.)

To obtain a first-order approximation of the magnitude of the incentives to misreport expected
production and of its consequences on revenues, Appendix 1 provides a methodology to model
the yearly production distribution of a wind farm project, and this from an ex ante perspective.

For three different scenarios and for a given price bid (equal to that awarded to the win-
ning bidder in the corresponding project), Figure 2 depicts the PDF of the discounted rev-
enue raised over 20 years for two offshore wind farm projects in Le Tréport and Saint-Nazaire.
The scenarios correspond to the linear FiT and the French payment rule, first when all firms
are truthful and then when all firms are strategic, i.e. formally when q0 = E[qt] and when
q0 = q∗0 ∈ Argmaxq∈R+ E[R(qt, q)] respectively.11 When firms report their expected production
truthfully, we observe (as expected) that the revenue distribution is less spread out under the
French rule than under the linear FiT. However, firms could benefit from a significant upward
shift in their revenue distribution by strategically overestimating their expected production: for
the five wind farms used in our simulations, we estimate that risk neutral firms’ optimal report
consists of overestimating their expected production by 11.9 to 12.5% which would increase their
expected revenue by 3.2 to 3.6% (for any given price). But by doing so, they also increase the
standard deviation of their revenue distribution by 72 to 85% compared to truthful reporting,
which ends up being 10 to 13% greater than the standard deviation under the linear FiT. In

11Here, in order to simplify, we consider that the optimal reported reference production is that which would
maximize the expected revenue, or equivalently the expected payoff of a risk neutral firm. More generally, the
optimal (mis)report would depend on firms’ risk aversion and also possibly on the price bid p, as explained later.
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Figure 2: Firm’s revenue distribution depending on the payment rule and the strategy regarding
the reference production

overall terms, the French payment rule that was presumably insuring firms against production
risk could have exactly the opposite effect.

To pursue the comparison with the linear FiT, we should also take into account the fact
that the price bid should not be the same under both contracts. Assuming that the contracts
are awarded through competitive auctions and that all bidders are strategic, the benefits from
overstating production would be competed away in the auction. Suppose that p is the equilibrium
price under the linear FiT once firms are risk neutral. Then let pS denote the price bid that
yields the same expected subsidy under the French rule with strategic reporting (formally, pS =

pE[qt]/E[R(qt, q
∗
0)]). After this price rescaling, we find that the variance of pS ·R(qt, q

∗
0) is greater

than the variance of p ·qt by 6.6 to 9.3% in the five wind farm projects included in our simulations.
In other words, the alleged benefit from the French rule – insurance provision – can be largely
offset by strategic reporting and is likely to fail to achieve its original objective of reducing firms’
risk premiums. An in-depth analysis of risk premiums and of the expected equilibrium subsidy in
this application is developed in Section 6.
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3 The model

We develop a theory of auctions for production contracts when the quantity produced ex post
is determined by exogenous conditions and when the payment rule has an insurance provision
clause. Namely, we consider the following setup:

Production risk: A buyer wishes to contract with a firm to develop a risky project where
the quantity produced ex post q is an exogenous random variable.12 In particular, efforts made
by the contractor have no influence on the distribution of q. We assume that the random variable
q is distributed on R+ according to the PDF f with the expected value Ef [q] ≡ q̄ > 0. Let F
denote the corresponding (atomless) CDF. Throughout our theoretical analysis we often consider
distributions that are symmetric and single-peaked and we let Fsp denote the corresponding set
of distributions.13

The auction rule: The buyer selects the contractor through a first-price auction among
N ≥ 2 firms: each bidder submits a pair (p, q0) ∈ R2

+ where p corresponds to a (per quantity)
price bid and q0 to the so-called reference production. The buyer selects the offer involving the
lowest price bid p. When necessary for our equilibrium analysis, a tie-breaking rule will be
specified. In particular, when two firms submit the same lowest price bid and if when winning
one would make zero profit while the other’s expected payoff would be strictly positive, then we
always assume that the tie is broken in favor of the latter.

As clarified below, the buyer expects contractors to report the expected production q̄ for q0. If
a firm reports a reference production q0 6= q̄, then we will say that the firm misreports its expected
production.

The class of contracts: The contract between the buyer and the winning firm specifies a
remuneration rule as a function of the latter’s bid (p, q0) and of the actual production q. The
remuneration rule takes the multiplicative form p · R(q, q0) where the function R : R2

+ 7→ R+

is called the payment rule.14 Among these contracts, we call linear contracts those for which
R(q, q0) = q for any q0. In addition, we always assume that the payment rule satisfies the
following technical restrictions: i) The function q 7→ R(q, q0) is continuously non-decreasing15

with R(0, q0) = 0 for any q0 ∈ R+; ii) The function q 7→ R(q, q) is strictly increasing with
12The variable q could also correspond to a measure for quality, or more generally to any kind of uni-dimensional

verifiable measure characterizing the contractor’s output.
13Formally, this means that f(q̄+x) = f(q̄−x) for any x ∈ [0, q̄], f(q) = 0 for q > 2q̄ and that f is non-decreasing

on [0, q̄].
14Our analysis of firms’ incentives to misreport their expected production holds for any given price p and our

specific multiplicative form is imposed without loss of generality. On the contrary, it plays a role in Section 5 to
derive the quantitative impact of strategic behavior on the buyer’s expected cost. See Section 8 for a discussion.

15The non-decreasing property guarantees that the contractor does not wish to reduce production ex post. The
continuity assumption is not mandatory for most of our results but allows us to avoid technicalities related to
intermediate properties holding almost everywhere instead of everywhere.
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limq→+∞R(q, q) = +∞; iii) The function q0 7→ R(q, q0) is differentiable for any q ∈ R+; iv)
Without loss of generality, we also make the normalization R(q0, q0) = q0.16

We further say that a payment rule is homogeneous of degree 1 if R(λ · q, λ · q0) = λ ·R(q, q0)

for any λ, q, q0 ≥ 0.
Firms’ payoff: We assume that firms value their revenue according to an increasing differen-

tiable concave utility function U with limx→+∞ U(x) = +∞. Firms are risk neutral if U is linear
and are risk averse (resp. strictly risk averse) if U is concave (resp. strictly concave). For some
results, we consider CRRA utility functions, i.e. utility functions U such that U ′(x) = x−γ , where
γ ≥ 0 corresponds to the relative risk aversion coefficient. The firm’s expected payoff conditional
on winning the auction with the bid (p, q0) is denoted by Π(p, q0) ≡ Ef [U(p ·R(q, q0))]. If a firm
loses the auction and thus does not sign any contract, its expected payoff is given by U(C) where
C corresponds to the fixed cost that is needed to develop the project. The cost C is sunk after
signing the contract such that losing the auction can be viewed as offering the equivalent cash
revenue C.17

Truthful/Strategic behavior: Each firm is either truthful, meaning it reports q̄ for q0, or
strategic, meaning it reports a quantity q0 belonging to the set Q∗0(p) ≡ Arg maxq0∈R+

Π(p, q0)

given its price bid p.18 In other words, for a given price bid p, strategic firms face the menu
of contracts {p · R(q, q0)}q0∈R+ among which they pick the contract they prefer. We let ΠS(p)

(resp. ΠT (p)) denote the expected payoff of a strategic (resp. truthful) firm winning the auction
at the price bid p, i.e., ΠS(p) = maxq0∈R+ Π(p, q0) (resp. ΠT (p) = Π(p, q̄)). Then, for a given
distribution f , a given utility function U and a given contract price p > 0, we say that a payment
rule is strategy-proof (resp. manipulable) if firms do not benefit (resp. do strictly benefit) from
misreporting their expected production, i.e., formally, if ΠS(p) = ΠT (p) (resp. ΠS(p) > ΠT (p)).
The linear contract is always strategy-proof since the contractor’s payoff does not depend on q0.
If a firm reports q0 > q̄ (resp. q0 < q̄), then we say from now on it overstates (resp. understates)
its reference production (compared to its expected production).

In the specific case of CRRA utility functions (which includes the case of risk neutral firms),
then the ratio ΠS(p)/ΠT (p) does not depend on p and we thus obtain that if a payment rule
is manipulable (resp. strategy-proof) for a given price bid p > 0, then it is manipulable (resp.

16Since the function q 7→ R(q, q) is a bijection on R+, then we can always renormalize the variable q such that
R(q, q) = q. Nevertheless, renormalizing the variable q in this way could be at the cost of losing the property
f ∈ Fsp. From this perspective, the assumption that f ∈ Fsp is not innocuous.

17An alternative specification would consist of letting the winning bidder’s payoff be Ef [U(p ·R(q, q0)−C)] and
the losing bidder’s payoff be U(0). Such a specification would be equivalent to ours, thanks to a re-normalization
of U that would not modify the concavity property. However, our specification is more convenient when dealing
with CRRA utility functions.

18We assume implicitly that the payment rule is such that this set is not empty for any price p. This set is
guaranteed to be non-empty if we specify the payment rule such that R(q, q0) = q for q ≥ 2q0, an extra assumption
that we could add while remaining consistent with our analysis.
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strategy-proof) for any price bid in R+. Thus for a given distribution f and a given CRRA utility
function, we say that a payment rule is manipulable/strategy-proof without specifying any price
bid.

We are interested in payment rules that provide insurance against production variability com-
pared to the linear contract. From a positive perspective, the latter appears as a natural bench-
mark since it is both commonly used and strategy-proof. The theoretical status of the linear
contract as an optimal contract when firms are risk neutral is discussed later in Section 8.

Definition 1. A payment rule R(q, q0) is production-insuring if for any f ∈ Fsp, any risk averse
firm and any contract price p > 0,

Ef [U(p ·R(q, q̄))] ≥ Ef [U(p · q)] (1)

and where the inequality is strict (resp. stands as an equality) if the firm is strictly risk averse
(resp. risk neutral).

In words, the production-insuring payment rules correspond to the payment rules that make
risk averse truthful firms better off without increasing the expected payment made to the firm
and this in a robust way insofar as it should hold for any distribution f ∈ Fsp.

Our model considers that all firms have the same investment cost C, the same utility function
U and the same production distribution f . Thus it leaves out the usual adverse selection issues
which would generate some trade-off between maximizing allocative efficiency and minimizing
firms’ informational rents. Moreover it also leaves out moral hazard.19 We do not attempt to
derive an optimal procurement as Laffont and Tirole (1986) and McAfee and McMillan (1987)
did in models with risk neutral firms competing for a contract, but rather adopt a “positive”
perspective: Our objective is to delineate a pitfall associated with production-insuring payment
rules, motivated by the fact it has been used and it is quite tempting to use when the environment
involves exogenous production risk. It can indeed be viewed as the natural class of rules that a
naive buyer might adopt, assuming bidders would report their true reference production (as one
could naively expect). Under such an assumption, the risk premium or equivalently the buyer’s
expected cost would indeed be reduced compared to the linear contract (as detailed in Section 5).

To evaluate the performance of a payment rule, the criterion we consider is to maximize the
expected payoff of a risk neutral buyer. In our setup where all firms have the same production
distribution, this criterion reduces to the buyer’s expected cost (henceforth the BEC), i.e., p ·
Ef [R(q, q0)] where (p, q0) corresponds to the winning bid), which depends on the payment rule
R(., .) but also on whether firms are truthful or strategic.

19Both asymmetry between firms and moral hazard are briefly discussed in Section 8.
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4 Strategic misreporting in production-insuring payment rules

We analyze firms’ incentives to misreport their expected production when the payment rule is
production-insuring. Intuitively, the magnitude of misreporting can be viewed as a proxy of the
flaws resulting from the presence of strategic bidders as will be developed in our equilibrium
analysis in Section 5.

Let us first characterize the payment rules that are production-insuring. For any payment
rule and any pair q, q0 > 0, we can express the term R(q, q0) as q · zq0( qq0 ) where the function
zq0 : R+ → R+ can be viewed as a correction factor with zq0(1) = 1. Definition 1 implies that
Ef [zq0( qq̄ )] = 1 for any f ∈ Fsp. Lemma 1 (whose tedious proof is relegated to the SA) establishes
in addition that a production-insuring payment rule would never deflate (resp. inflate) payments
compared to the linear contract for production occurrences that are lower (resp. higher) than the
reference production q0: the correction factor is greater (resp. less) than one when production is
lower (resp. higher) than q0. Furthermore, the fact that these correction factors should compensate
in expectation for any symmetric risk imposes a one-to-one relationship between zq0(1 + ε) and
zq0(1− ε).

Lemma 1. A payment rule is production-insuring if and only if we have for any q0 > 0 and
ε ∈]0, 1], zq0(1 + ε) ≤ 1, zq0(1 − ε) ≥ 1, (1 + ε) · zq0(1 + ε) + (1 − ε) · zq0(1 − ε) = 2 and∫ ε

0 zq0(1 + t)dt < ε.

We then obtain the fact that the payment rule used by the French government is production-
insuring (see in particular Footnote 9). As a corollary of Lemma 1, we also obtain that if there
is no risk relating to production, then overestimating (resp. underestimating) future production
can never be detrimental (resp. beneficial) to the contractor under a production-insuring payment
rule. Furthermore, the contractor would also strictly gain from slightly overestimating production
since the correction factor zq0(.) is strictly greater than 1 for some values in the left neighborhood
of 1. Next we generalize this insight for any f ∈ Fsp and when the contractor is risk neutral.

Proposition 2. For any f ∈ Fsp, any production-insuring payment rule is manipulable if the
contractor is risk neutral. Furthermore, the contractor weakly increases (resp. decreases) its
expected payoff by overestimating (underestimating) its expected production.

Proposition 2 formalizes a fundamental conflict between insurance provision and strategy-
proofness. We stress that the incentive to overestimate the expected production holds for any
distribution in Fsp. Nevertheless, this result holds only when the contractor is risk neutral. Risk
aversion modifies the (mis)reporting incentives: in particular, underestimating production could
be a way to hedge against the worst production outcomes. To get more intuition about this novel
channel, think of the French payment rule where R(q, q0) = q if q ≤ 0.85 · q0. If production
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of below 0.85 · q0 may occur with positive probability, then, under truthful reporting, the worst
production outcomes would not benefit from a correction factor greater than one. On the contrary,
underestimating the reference production could be a way to increase the contractor’s revenue for
those worst outcomes. From an empirical perspective, this channel does not play a significant role
under the French rule in our simulations. Nevertheless it prevents us from deriving the analog of
Proposition 2 under risk aversion.

To obtain further insights into the way risk averse contractors wish to misreport their expected
production, and in particular about the factors that drive the magnitude of overestimation, we
impose more structure on our model. We consider a specific class of payment rules where the
remuneration to the contractor is totally flat within a range around the reference production q0,
and matches the linear contract outside this range. We assume that the insurance range is large
enough to fully insure the contractor under truthful reporting and that the PDF f is continuous on
R+ and such that x 7→ 1−F (x)

f(x) is decreasing on the interior of its support. Under such assumptions,
we obtain the following results (whose tedious proofs are relegated to the SA): any optimal report
of a risk averse (strategic) contractor is above the true expected production and below the optimal
report of a risk neutral contractor (the latter does not depend on the contract price p and is then
denoted qRN0 ). Formally, for any q∗0 ∈ Q∗0(p), we have q̄ ≤ q∗0 ≤ qRN0 .

With the additional restriction that U is a CRRA utility function, we obtain that the set
of optimal reports Q∗0(p) is a singleton which does not depend on p and derive the following
comparative statics on the corresponding optimal report q∗0 > q̄:

1. The lower is the coefficient of relative risk aversion γ, the higher is q∗0.

2. Considering two production distributions F1 and F2, where F1 is less risky than F2 in the
sense that f1(q)

(1−F1(q)) ≤
f2(q)

(1−F2(q)) for any q ≤ q̄, then the optimal report q∗0 is higher when
the contractor faces the least risky distribution F1 than when they face the most risky
distribution F2.

3. If the insurance range is larger for payment rule R1 than for R2 (which implies that
R1(q, q0) ≥ R2(q, q0) if q ≤ q0), then a strategic contractor with γ ≥ 1 reports a higher
reference production q∗0 when facing R1 than when facing R2.

5 Auction prices and the buyer’s expected cost

Through our equilibrium analysis, we characterize the bid pairs (p, q0) submitted by firms and
the resulting BEC depending on whether firms are truthful or strategic, and the number in each
category. We assume throughout Sections 5 to 7 that the cost C, risk distribution F and utility
function U are the same for all firms and are common knowledge. We first consider a complete
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information setup where strategic firms know whether their opponents are truthful or strategic.
We first consider the case when all firms are truthful, then the case when several firms are strategic,
and last when a single firm is strategic. Finally, we turn to an incomplete information setup where
each firm is strategic (independently of the others) with a given probability α which is assumed
to be common knowledge.

Firms’ beliefs regarding whether their opponents are truthful or strategic do matter for strate-
gic firms (and the specifications below are consistent with rational expectations), but they do not
matter for truthful firms: in equilibrium, truthful firms bid the price that leads to zero surplus
and this independently of their beliefs regarding their opponents.20 Therefore, our analysis fits
both the case where truthful firms are unaware of the possibility of misreporting their expected
production (in which case it would be natural to assume that they believe that their opponents
are also truthful) and the case where truthful firms are not able to misreport their expected
production but are fully aware that some of their opponents could do so.

We stress that the results derived hereafter (unless specified otherwise) are not limited to
production-insuring payment rules but hold for any payment rule R that fails to be strategy-
proof.

Complete information

If all firms are truthful or if at least two firms are strategic, then the winning firm had to compete
in the auction with at least one fully identical firm. In such cases, Bertrand competition leads
to zero surplus for the firms and the equilibrium price is characterized by their indifference to
winning or losing the auction (see formal details in the SA). Nevertheless, the BEC depends
on the payment rule and the presence of strategic bidders, as both result in different levels of
insurance provision, and therefore different risk premiums.

Case 1: all firms are truthful
If all firms are truthful, the equilibrium price, denoted pT , is the unique solution of:

ΠT (pT ) ≡ Π(pT , q̄) = U(C) (2)

and the BEC is equal to pT ·Ef [R(q, q̄)], which reduces to pT · q̄ if R is production-insuring and if
f ∈ Fsp. Let pL denote the equilibrium price for the linear contract, then the corresponding BEC
is equal to pL · q̄ if f ∈ Fsp.

20We ignore equilibria based on weakly dominated strategies where truthful firms submit a bid that would
generate a negative surplus when winning because they expect to be outbid for sure by a strategic firm. Standard
refinements (like trembling-hand perfect equilibrium, see Fudenberg and Tirole (1991)) allow those non-relevant
equilibria to be eliminated.
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When firms are risk neutral, we obtain from (2) that the BEC is equal to the contractor’s
cost C for any payment rule. On the contrary, the BEC depends on the payment rule under risk
aversion.

Proposition 3. Suppose all firms are truthful and f ∈ Fsp. The equilibrium price and the buyer’s
expected cost are smaller under a production-insuring payment rule than under the linear contract.
They are strictly smaller if firms are strictly risk averse, and equal if firms are risk neutral.

Since U is concave, we obtain from (2) and Jensen’s inequality that pT · Ef [R(q, q̄))] ≥ C for
any payment rule R, or equivalently that: the BEC is necessarily greater than the firm’s cost. If
the payment rule fully insures the contractor so that the transfer is unchanged for any production
outcome in the support of f , then the equilibrium price and the BEC are the same as in the risk
neutral case: pT = C

q̄ , and the cost for the buyer is C. On the contrary, if firms are strictly risk
averse and the payment rule does not fully insure, a strict difference emerges between the BEC
and C which corresponds to a risk premium. This is true in particular for the linear contract, for
which we have pL · q̄ > C.21 As formalized in Proposition 3, production-insuring payment rules
reduce this risk premium compared to the linear contract.

Case 2: several firms are strategic
Consider now the case where at least two firms are strategic. The strategic firms’ equilibrium

price bid, denoted by pS , is the unique solution of:

ΠS(pS) ≡ max
q0∈R+

Π(pS , q0) = U(C) (3)

while truthful firms (if any) submit price bids that are greater than pS and thus irrelevant
for the equilibrium outcome.22 Strategic firms report a reference production qS ∈ Q∗0(pS) ≡
Argmaxq0∈R+ Ef [U(pS ·R(q, q0))]. If the latter set is not a singleton, multiple equilibria exist and
they are equivalent in terms of firms’ payoff but possibly produce different BEC, depending on
the reference production (within Q∗0(pS)) submitted by the winning firm.

When firms are risk neutral, we obtain from (3) that the BEC is equal to C for any payment
rule due to the absence of both risk premiums and positive surplus (the latter being competed
away in the presence of several strategic firms). However, in such a case, the equilibrium price
differs from that when all firms are truthful: we have pS = C

maxq0∈R+
Ef [R(q,q0)] ≤ p

T (with a strict

inequality if the payment rule is manipulable at price pT ). Proposition 4 generalizes this inequality
to environments with risk averse firms.

21Here we use the strict version of the Jensen inequality which guarantees that U(pL · q̄) > Ef [U(pL · q)] for any
strictly concave function U , while from (2) the latter term is equal to U(C).

22In equilibrium, a truthful firm would necessarily make a negative surplus by outbidding a strategic firm whose
bid satisfies the zero surplus condition: formally, this comes from ΠT (p) < ΠS(pS) = U(C) for any p < pS .
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Proposition 4. Suppose several firms are strategic. The equilibrium price is lower than the
equilibrium price when all firms are truthful (pT ), and the inequality is strict for payment rules
that are manipulable at price pT . If the payment rule provides full insurance against production
risk to a truthful firm, is homogeneous of degree 1 and if firms are strictly risk averse, then the
buyer’s expected cost is strictly greater with several strategic firms than with only truthful firms.

The second part of Proposition 4 points out a particular case where the BEC is greater than in
the environment where all firms are truthful because the ex post revenue becomes risky and then
risk premiums (absent under truthful bidding) emerge. This illustrates the fact that when the
winning firm is strategic, a lower equilibrium price does not necessarily imply a lower cost for the
buyer: the BEC is equal to the product of the equilibrium price with the term Ef [R(q, qS)]. There
are thus two effects at work with respect to the BEC when we move from case 1 to case 2, i.e.,
from competition between truthful firms to competition between strategic firms: on the one hand
the equilibrium price decreases as firms’ benefits from misreporting are competed away; on the
other hand, the term Ef [R(q, q0)] varies due to misreporting. Furthermore, given our equilibrium
analysis in Section 4, we expect that Ef [R(q, qS)] > Ef [R(q, q̄)] and thus that these two effects
will be conflicting23: formally, for any f ∈ Fsp and risk neutral firms, it will be the case for
any production-insuring payment rule such that in equilibrium strategic firms overestimate their
expected production, insofar as Proposition 2 shows that Ef [R(q, q0)] ≥ Ef [R(q, q̄)] = q̄ for any
q0 ≥ q̄. Moreover, the further insights presented at the end of Section 4 reinforce our conjecture
in favor of overestimation even in the risk averse case. On the whole, the zero surplus condition
imposes that these two effects perfectly cancel each other out regarding the contractor’s expected
payoff, but they are not necessarily neutral regarding the BEC. We conjecture that strategic
behavior will typically expose firms to higher risk and thus increase risk premiums, as will be
confirmed by our simulations. Nevertheless, Example 1 in the SA exhibits a production-insuring
payment rule where the equilibrium BEC with several strategic firms may be lower than when all
firms are truthful.24

In a nutshell, when all firms are truthful any production-insuring payment rule outperforms the
linear contract (Proposition 3). The presence of several strategic bidders lowers the equilibrium
price even more, but through a deceptive effect which does not necessarily imply a lower BEC than
under a linear contract. The last case considered below departs from perfect Bertrand competition

23On the contrary, under the less plausible hypothesis that Ef [R(q, qS)] < Ef [R(q, q̄)], then the BEC is unam-
biguously lower in case 2 than in case 1: under such circumstances, switching from case 1 to case 2 would be Pareto
improving. When R is production-insuring and f ∈ Fsp, note from Proposition 2 that Ef [R(q, qS)] < Ef [R(q, q̄)]
holds only if qS < q̄, and the latter inequality is never satisfied if firms are risk neutral.

24In this example, the insurance provided by the payment rule is almost vanishing under truthful reporting
while the payment rule is flat further away from the expected production q̄ and provides insurance when firms are
optimally misreporting their expected production.
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and the single strategic firm benefits from a positive surplus. This novel channel acts in favor of
strategy-proof payment rules.

Case 3: a single firm is strategic
In this third case under complete information, we consider that there is a single strategic

firm. The equilibrium then takes the following form:25 truthful firms bid (pT , q̄) exactly as in the
equilibrium where all firms are truthful, while the strategic firm (knowing ties are broken in its
favor) bids (pT , qS−T ) where qS−T ∈ Q∗0(pT ). The latter firm wins the auction and the BEC is
then equal to pT · Ef [R(q, qS−T )]. The difference ΠS(pT ) − ΠT (pT ) ≥ 0 represents the surplus
reaped by the strategic firm from misreporting its expected production. This surplus is strictly
positive if the payment rule is manipulable at price pT .

Proposition 5. Suppose only one firm is strategic. The equilibrium price is the same as the equi-
librium price when all firms are truthful (pT ). If firms are risk neutral, then the buyer’s expected
cost is equal to the sum of C and the non-competitive rent pT · (Ef [R(q, qS−T )] − Ef [R(q, q̄)]),
the latter being null under the linear contract and strictly positive under a payment rule that is
manipulable.

If U is a CRRA utility function and if the payment rule is manipulable, then the buyer’s
expected cost is strictly higher than when several firms are strategic.

When comparing the BEC in case 3 and case 2, both the effect on the equilibrium price and
the variation of Ef [R(q, q0)] could be at work. However, when qS = qS−T 6= q̄ which happens to
be the case when the utility function is CRRA and R is manipulable, then only the price effect
matters. Then, since pS < pT , the BEC is strictly greater when a single firm is strategic than
when several firms are strategic.

When comparing case 3 with case 1, only the second effect matters. In addition, given Propo-
sition 2 and as argued in case 2, we again expect that Ef [R(q, qS−T )] ≥ Ef [R(q, q̄)]: formally, if R
is production-insuring and f ∈ Fsp, then the BEC increases when switching from the case where
all firms are truthful to the case where a single firm is strategic provided that qS−T ≥ q̄. Yet this
overestimation hypothesis is supported by our analysis in Section 4. Thus the BEC presumably
increases by a larger magnitude when only one firm (instead of several firms) become strategic.

In both case 2 and case 3 (but also in our incomplete information paradigm below), the
equilibrium price is (weakly) lower than pT . We then obtain the fact that the percentage increase
of the BEC compared to case 1 is bounded above by [supq,q0{zq0(q/q0)} − 1]. In the French rule,
the latter bound is equal to 1/9 meaning that the BEC increase due to misreporting cannot exceed
12%.

25In order to avoid the well-known problem of the non-existence of an equilibrium in some discontinuous strategic
games (Simon and Zame, 1990), we assume in this case that ties are broken in favor of the strategic firm.
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Regarding the comparison between a production-insuring payment rule and the linear contract
(for any f ∈ Fsp), the ranking is ambiguous in general when there is a single strategic firm.
However, if firms are risk neutral then the linear contract strictly outperforms any production-
insuring rule when a single firm is strategic. We next consider an incomplete information setup
where firms ignore whether their competitors are truthful or strategic.

Incomplete information

Consider now N ≥ 2 firms each being strategic (resp. truthful) with probability α (resp. 1 − α)
independently of the other firms. Each firm knows its own status and the parameter α ∈]0, 1[ but
ignores other firms’ status.

Proposition 6. Equilibrium under incomplete information
Suppose each firm is strategic (resp. truthful) with probability α (resp. 1−α) independently of

each other, where α ∈]0, 1[ is common knowledge. If the payment rule is manipulable at pT , then
in equilibrium, all firms adopt the following strategy:

• If the firm is truthful, it bids (pT , q̄).

• If the firm is strategic, it adopts a mixed strategy, consisting of bidding (p, q0) with
q0 ∈ Q∗0(p) and the price bid p being distributed according to the CDF G(p) = max{1 −
1−α
α

(
N−1

√
ΠS(pT )−U(C)
ΠS(p)−U(C)

− 1
)
, 0}. The upper (resp. lower) bound of the distribution G is

equal to pT (strictly greater than pS).

If for any price bid p in the support of G the set Q∗0(p) is a singleton, then the equilibrium
is unique. On the contrary, if there are multiple optimal misreports, then any selection forms an
equilibrium and the BEC would depend on the selection denoted next by q∗0(p) for any given price
in the support of G.

In equilibrium, the expected surplus of a truthful (resp. strategic) firm is null (resp. is equal to
(1−α)N−1[ΠS(pT )−ΠT (pT )] > 0). Intuitively, such positive surplus should translate into higher
costs for the buyer. Note that in this incomplete information setup, the BEC is an expectation not
only over the production distribution F but also over the probability for each firm to be strategic
and over strategic firms’ mixed strategy G. Thus the BEC differs from that under complete
information through two effects: first, the probability of being in each state (none, several or a
single strategic firm), second the bids submitted by each strategic firm which, independently of the
realized state, do take into account the probability of facing competition from another strategic
firm. To obtain further insights, we consider in the next proposition that firms are either risk
neutral or risk averse with a CRRA utility function. In such cases, the set Q∗0(p) does not depend
on p and is denoted Q∗0.
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Proposition 7. Suppose that U is a CRRA utility function and consider a payment rule R that
is manipulable. Under incomplete information, for all α ∈]0, 1[:

• If Ef [R(q, q∗0)] ≥ Ef [R(q, q̄)] for any q∗0 ∈ Q∗0, then the buyer’s expected cost is strictly lower
than the highest buyer’s expected cost when there is a single strategic firm under complete
information, and it is strictly higher than the lowest buyer’s expected cost under complete
information.26

• If firms are risk neutral, then the buyer’s expected cost is equal to the sum of C and the
non-competitive rent

N · α(1− α)N−1 · pT
(
Ef [R(q, qS−T )]− Ef [R(q, q̄)]

)
> 0. (4)

When firms are risk neutral, the expected non-competitive rents in (4) vanish in the two
polar limit cases where α is equal to 0 or 1, which are actually covered by Propositions 3 and 4.
Moreover for any intermediary value of α, the uncertainty about each firm being strategic or not
moderates the expected extra cost for the buyer compared to the case of complete information
with a single strategic firm case, where the extra cost is equal to pT (Ef [R(q, qS−T ]− Ef [R(q, q̄]).
The maximum expected extra cost (over α) is reached for α = 1

N , that is when the probability
of having exactly one strategic firm is the highest. We thus obtain that the increase in the BEC
cannot be higher than half of the extra cost when there is a single strategic firm under complete
information (this bound is reached for N = 2).27

When firms are risk averse, additional assumptions are needed to draw conclusions about the
BEC. The condition Ef [R(q, q∗0)] ≥ Ef [R(q, q̄)] for any q∗0 ∈ Q∗0 is a very mild condition stating
that the equilibrium with truthful firms outperforms any equilibrium with a single strategic firm
under complete information. Such conditions, which were previously discussed for production-
insuring payment rules, guarantees that the BEC under incomplete information lies somewhere
in between the worst case and the best case under complete information.

We conclude that the rents captured by the firms are smaller with such “miscoordinated het-
erogeneity”, but could still have a sizable effect of the same order of magnitude. In our simulations
we consider the complete information case with a single strategic firm to evaluate a worst case
scenario, while bearing in mind that the increase in the BEC would be mitigated under incomplete
information.

26Formally, the highest BEC when there is a single strategic firm is equal to pT · maxq0∈Q∗
0
Ef [R(q, q∗0)]. The

lowest BEC under complete information can be reached either with zero or several strategic firms.
27Conversely, in this worst case, the increase in the BEC cannot go lower than 36% of the extra cost when there is

a single strategic firm (since (1− 1/N)N−1 > exp(−1) > 0.36, which results from a standard logarithm inequality).

22



Comments: Our equilibrium analysis is analogous to the analysis of first price auctions with
two (possibly risk averse) symmetric bidders having binary valuations developed by Maskin and
Riley (1985): being strategic (resp. truthful) in our procurement setup corresponds to having a
high (resp. low) valuation in Maskin and Riley’s (1985) auction setup.28 There are nevertheless
two differences: First we consider any number of bidders. Second, the ex post revenue of a strategic
bidder, which is equal to p ·R(q, q∗0(p)), where q∗0(p) ∈ Q∗0(p), may no longer be linear in the price
bid p insofar as the optimal report q∗0(p) could now depend on p. The latter difference matters
when it comes to the analysis of other auction formats and to establishing a revenue ranking. If
the set Q∗0(p) does not depend on the price bid p (let us use the shortcut notation Q∗0), then the
equilibrium analysis is straightforward in the second price auction (or equivalently the English
auction): truthful (resp. strategic) firms bid (pT , q̄) (resp. (pS , q0) with q0 ∈ Q∗0). Then exactly as
in Maskin and Riley (1985) when valuations are drawn independently, we can check the revenue
equivalence between first-price and second-price auctions if firms are risk neutral, and that the
first-price auction outperforms the second-price auction if firms are risk averse.29 Note that the
equivalence between first- and second-price auctions holds only under the complete information
paradigm.

6 Performance analysis of the French rule

The French government used a production-insuring payment rule in the auctions for six offshore
wind farm sites. These contracts were awarded separately through first-price sealed bid auctions:
The firm asking for the lowest subsidy per MWh was declared the winning bidder.30 It was
then subsidized according to both this price and its reference production, the latter being the
yearly production derived from the firm’s self-reported average capacity factor.31 From a practical
perspective, unrealistic capacity factors would lead to disqualification. Nevertheless, France did
not adopt explicit ranges for eligible capacity factors as other countries do. Our analysis leaves
out the disqualification risk associated with misreporting. Such disqualification risk does not seem
particularly relevant in our case since the optimal overestimation never exceeds 13%, which is of

28 Doni and Menicucci (2012) extend the analysis to two asymmetric bidders when bidders are assumed to be
risk neutral.

29On the contrary, if Q∗0(p) does depend on the price bid p, then the analysis under incomplete information is less
straightforward: in particular, neither the bid pair (pS , qS) nor the pair (pS , qS−T ) is a weakly dominant strategy
for a strategic firm. The optimal reference production of a given strategic firm depends on its expectation on the
price bid fixed by the auction rule in the case where it wins.

30These auctions were actually scoring auctions: in addition to the per-unit subsidy bid p, other criteria such as
local environmental impact or carbon footprint were taken into account to determine the winning bid. We leave
out such “multidimensional bidding” aspects given that they do not interfere with the production-insuring payment
rule.

31The capacity factor is the power output divided by the maximum power capacity of the installation (the latter
being a technical feature that is verifiable).
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the same order of magnitude as the prediction bias observed in practice for wind farms (Lee and
Fields, 2020).

A first slight difference with our theoretical framework is that we now explicitly consider multi-
year contracts: the length is 20 years, during which the production-insuring payment rule R(., .)

defined in Section 2 applies separately to each year, based on the expected yearly production
q0 reported freely by firms in their bid. A second difference is that we consider both a (fixed)
investment cost IC occurring before production (which corresponds to C in our model), and
(fixed) operating costs OC occurring each year. The values we use for our analysis are reported in
Appendix 1. For a given bid (p, q0), firms’ expected payoff difference between winning and losing
the auction can then be expressed as:

E

[
U(

20∑
t=1

[p ·R(qt, q0)−OC]

(1 + r)t
)

]
− U(IC), (5)

where the expectation is made w.r.t. the vector of yearly production (q1, . . . , q20) and where r
denotes firms’ annual discount rate which is set equal to 5.7%.32 Let FC = IC +

∑20
t=1

OC
(1+r)t

denote firms’ net present cost. Firms’ risk aversion is captured through CRRA utility functions
where we take γ between 0 and 15. For a given price bid p, a strategic firm reports an expected
production q∗0(p) that maximizes the expression in (5). As a robustness check, we have also
considered, in more general terms, the utility function U(x) = (x−IC+w)1−γ

1−γ where w should be
interpreted as the firm’s initial wealth. The results reported below correspond thus to w = IC.
In the SA, we report results when the initial wealth is equal to the total net present cost of the
firm, i.e., when w = FC.

When the payment rule is homogeneous of degree 1, as are the French rule and also the
payment rules considered in Section 7, CRRA utility functions generate useful properties that are
detailed in the SA. We show in particular that the equilibrium BEC (under our various bidding
paradigms) is strictly proportional to firms’ net present cost and does not change if we multiply
actual production by a constant. These fundamental properties are established in Lemma 9 in
the SA. In this section, it implies that the ratio between the equilibrium expected subsidy paid
by the buyer and firms’ net present cost FC remains unchanged if we multiply the investment
and operation costs by the same constant.33

32Our choice is based on an estimation of the cost of capital for onshore wind projects in France made by
Angelopoulos et al. (2016) which accounts for taxation and for compensation for other kinds of risks. Note that
our analysis leaves out many kinds of risks, including cost overruns or delays that are not entirely under the control
of the firms (e.g. connection to the grid). Those risks could generate much larger risk premiums but they are
orthogonal to the design of the payment rule.

33These ratios would change if we modified the investment cost while fixing the operating costs, or analogously
if we changed firms’ interest rates. However, in the same way as having an initial wealth different to IC has little
impact on our results, it would not change our insights.
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As detailed in Appendix 1, we calibrate the distribution of the vector of yearly production
(q1, · · · , q20) based on historic production simulated by models developed by Staffell and Pfen-
ninger (2016) and whose outputs are easily accessible through the site www.renewables.ninja.
The calibration procedure considers a wide range of possible yearly production based on recom-
bination of quarterly production values randomly drawn from historical data. On top of this
meteorological risk, we also consider that the capacity factor of each site’s wind resource suffers
from a misevaluation risk through a multiplicative normally-distributed shock (with a standard
deviation taken as σ = 6.3%).

We evaluate performance in comparison to the linear contract. Let BEC(p, q0) := p ·∑20
t=1

E[R(qt,q0)]
(1+r)t denote the buyer’s expected cost as a function of the winning firm’s bid (p, q0).

We compute equilibrium bids under the three complete information cases analyzed in Section
5: when all firms are truthful, when several firms are strategic, and last when a single firm is
strategic. Note first that for each bidding paradigm, firms submit only bids (p, q0) that lead
to positive surplus, i.e., such that the expression in (5) is positive. This implies (by applying
Jensen’s inequality) that BEC(p, q0) ≥ FC. As shown in Section 5, if firms are risk neutral this
inequality stands as an equality, except when there is a single strategic firm. Higher values for the
equilibrium BEC are driven either by a risk premium (resulting from firms’ risk aversion) or by
a positive noncompetitive rent captured by a (single) strategic winning bidder. Since the linear
FiT is strategy-proof, Bertrand competition prevails and firms make zero surplus.

Hereafter, all ranges presented correspond to the smallest and the largest result obtained
among the five sites retained.34 First, the risk premiums under a linear contract are notably
small: for γ = 1 they are comprised between 0.29− 0.36%, and fluctuate in the range 0.89− 1.1%

for γ = 3. When all firms are truthful, the risk premium is reduced by a bit more than half
under the French rule. However, these (limited) gains are entirely lost when all firms are strategic
and this for any reasonable level of risk aversion, as depicted in Figure 3 which depicts the BEC
divided by the expected quantity produced: only for unrealistic degrees of risk aversion (γ > 6) do
we find that the French payment rule outperforms the linear contract under strategic reporting.

As shown in section 5, heterogeneity among firms regarding misreporting produces noncom-
petitive rents that inflate the BEC. Our simulations support the idea that such rents are of a
larger order of magnitude than the risk premium reduction that the buyer could save in the most
favorable case where all firms are truthful: with a single strategic firm, we find a BEC 3.3− 3.6%

greater than under the linear FiT when firms are risk neutral, and 2.6− 2.9% greater when firm’s
risk aversion is up to γ = 3. Note that those figures are much lower than 1

9 ≈ 11.11% the theoret-
ical upper bound mentioned in Section 5. Nevertheless, for any intermediate risk aversion level,

34Detailed results are given in the SA. We have removed one site from our analysis because the recombination
procedure is inadequate for this specific site.
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Figure 3: Buyer’s expected cost per quantity produced with homogeneous firms as a function of
γ the relative risk aversion coefficient (Courseulles site)

the increase in BEC when a single firm is strategic is always more than four times greater than the
cost reduction thanks to insurance provision when all firms are truthful. For γ = 1, this increase
is more than 15 times greater than the potential cost reduction in the most favorable case where
all firms are truthful.

On the whole, we conclude that the premiums associated with production risk were quite
negligible which limits the benefits that the French payment rule could have brought thanks to
insurance provision. Furthermore, those potential benefits relied crucially on the hypothetical
assumption that all firms report their expected production truthfully, an assumption which con-
flicts with their incentives. Finally, the French rule opens the door to two kinds of pitfall: 1)
Strategic firms increase the variability of their revenue by overestimating their production which
nips in the bud the presumed benefits from a production-insuring rule if all firms are strategic; 2)
Heterogeneity among firms regarding truthful/strategic behavior could produce noncompetitive
rents. If all firms are strategic, we see from Figure 3 that the French rule and the linear FiT
perform almost equally well for any realistic level of risk aversion. On the contrary, the second
pitfall could increase the BEC by about 3%.

Last, we stress that our specification with a misevaluation risk (which tends to shrink over time
thanks to improvements in capacity factor predictions, see Lee and Fields’ (2020)) exacerbates the
potential benefits from insurance provision but also reduces the incentives from overestimating
production (as formalized at the end of Section 4) and thus the associated surplus captured by
strategic firms. Keeping this in mind reinforces the conclusion above.
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7 Beyond production-insuring payment rules

Our analysis so far provides strong arguments against the use of production-insuring payment
rules: they are (typically) manipulable which then leads to non-competitive rents in the auction
once firms are heterogeneous regarding their ability to misreport the reference production. How-
ever, our analysis does not claim that we should stick to the linear payment rule. We now adopt
the perspective of a sophisticated buyer who anticipates that firms may strategically report the
reference production q0. We explore whether there are any payment rules R(q, q0), not necessarily
production-insuring in the sense of Definition 1, that could bring a lower BEC in a manner that
is robust to strategic behavior, i.e. for any of our bidding paradigms.

With this in mind, we first formalize the fact that no payment rule R(q, q0) that is homoge-
neous of degree 1 can fully eliminate risk premiums for strategic firms. The restriction to payment
rules that are homogeneous of degree 1 excludes payment rules tailored to a specific distribution
f , which would be inappropriate in the presence of asymmetric information regarding f .35 In
other words, we formalize the fact that it is impossible to fully insure strategic firms against pro-
duction risk if the contract designer does not know the production distribution up to a homothetic
transformation.

Proposition 8. Consider a payment rule that is homogeneous of degree 1 and a contract price
p > 0. If the contractor optimally (mis)reports its reference production, then it is not fully insured
against production risk. Formally, q0 ∈ Q∗0(p) necessarily implies that the variance of p · R(q, q0)

is strictly positive, which means that the contractor’s revenue is risky.

This results from the fact that if reporting q0 ensures that the contractor is fully insured, the
latter would strictly benefit from reporting a reference production slightly higher than q0: the
potential loss from moving some of the lowest production outcomes (provided this mass is small
enough) outside the range where it is perfectly insured would be overcompensated by the benefits
from raising the correction factor for production outcomes remaining in this range.

Even though there is no hope of fully insuring strategic contractors we attempt to find a
better performing class of contracts, possibly by discouraging misreporting through “punishments”
(defined hereafter). Inspired by rules adopted in some countries for RES-E auctions,36 we consider
the following class of homogeneous of degree 1 payment rules R(w,η) parameterized by the pair of
coefficients (w, η) ∈ [0, 1]2 and defined in the following way:

35Without the homogeneous of degree 1 restriction, an obvious strategy-proof payment rule for any f ∈ Fsp such
that 0 does not belong to its support is that where R(q, q0) = q̄ if q0 = q̄ and R(q, q0) = q otherwise. To implement
such a payment rule, the contract designer needs to know q̄ exactly.

36In Brazil, e.g., features comparable to the “punishment” we study hereafter are implemented: the contractor
must pay 1.06 · p (where p is the per-unit price) for each quantity that it fails to deliver, while overproduction is
sold on the spot market (and thus typically at a lower price than p).
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Figure 4: Simplified production-insuring
payment rule with punishments

• R(w,η)(q, q0) = q0, if q ∈ [q0(1− w), q0(1 + w)],

• R(w,η)(q, q0) = (1− η) · q + η · q0(1 + w), if q > q0(1 + w),

• R(w,η)(q, q0) = max{ 1
1−η · q + (1− 1

1−η ) · q0(1− w), 0}, if q < q0(1− w).37

Figure 4 depicts such payment rules for w = 0.15 and various values for η. The parameters
w and η capture respectively the width of a range around q0 where firms are fully insured and
the strength of the punishment when actual production lies outside this range. If η = 0, then
the payment rule matches the linear payment rule outside the insured range and the payment
rule R(w,η) is production-insuring for any w > 0. On the contrary, when η > 0 then payment to
the firm decreases more rapidly (resp. increases more slowly) when production falls below (resp.
goes above) the insured range. Then the expected value of the correction factor under truthful
reporting may be strictly lower than one: the payment rule R(w,η) thus fails to be production-
insuring when η > 0.38 We thus circumvent the impossibility result in Proposition 2 and for
any f ∈ F , there may exist some R(w,η) differing from the linear contract but which are still
strategy-proof. Intuitively, the risk of production outcomes falling outside the insured range,
which would be “punished” by a correction factor below 1, deters firms from misreporting their
expected production.

The main question we ask is whether fixing the parameters (w, η) appropriately may lower
public spending in a way that is robust to some firms being strategic. We study this class of

37If η = 1, then we adopt the convention that R(w,η)(q, q0) = 0 if q < q0(1− w).
38If η > 0, then Ef [R(q, q̄)] < q̄ for any distribution f ∈ Fsp whose support is not a subset of [q0(1−w), q0(1+w)].
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payment rules through simulations of the complete information equilibria presented in Section 5.
Throughout this section, we consider a single year contract as in our theoretical framework, a
CRRA utility function with γ = 1 and two production distributions: first, a normal distribution
where the standard deviation is equal to 20% of the mean (Figure 5) and, second, a uniform
distribution on the interval [0.5q̄, 1.5q̄] (Figure 6).39 In Figures 5 and 6, the three panels (a), (b),
and (c) depict the ratio between the BEC and the producer’s cost, respectively in the equilibrium
when all firms are truthful, when several firms are strategic, and last when only one firm is
strategic. Next those three ratios are referred to as the performance ratios. We stress that
all these performance ratios depend neither on the production cost C nor on the mean of the
production distribution q̄ (that were thus left unspecified). Panel (d) depicts the ratio between
the reference production reported by a strategic firm q∗0 and the true expected production q̄. If the
payment rule is strategy-proof, then both strategic and truthful firms submit the bid pair (pT , q̄)

and the performance ratios are identical in the various paradigms. In Figures 5 and 6 we report
our results for the parameters (w, η) varying over the square [0, 0.5]2, i.e., for values such that the
performance ratios lie strictly above one since the BEC always includes a risk premium.40 When
there is a single strategic firm – panel (c) – the BEC also includes the positive surplus captured
by the winner: note that the scale in the legend of panel (c) differs significantly from those for
panels (a) and (b).

With truthful firms, the impact of both parameters on the performance ratio (or equivalently
on the risk premium) is quite intuitive: the larger the insurance range and the lower the extent
to which firms are punished, the lower is the risk premium, as shown in panel (a) in both Figures
5 and 6. The results are less straightforward in the presence of strategic firms.

Panel (d) in Figures 5 and 6 show that, overall, the larger the insurance range w the more
strategic firms overestimate their expected production. This is consistent with the comparative
statics regarding w that we derived in Section 4 (for η = 0). On the other hand, harsher pun-
ishments η lead firms to understate their expected production in an attempt to avoid outcomes
falling below the lower bound of the insurance range. A surprising result is the discontinuity of the
function mapping the payment rule parameters (w, η) into the optimal q∗0 that appears only for the
uniform distribution. This discontinuity results from the existence of two local maximums, each
moving in different directions with w and η. See Figure 7 for an illustration: the local maximum
on the left (with the lowest q0) consists of reporting a reference production slightly underesti-
mated compared to expected production to insure oneself against low production outcomes. This

39Then the standard deviation is equal to
√

1
12
≈ 29 % of the mean. The distributions thus differ mainly in the

sharpness of the peak.
40The payment rule R(w,η) provides full insurance only for the uniform distribution and in the limit case where

w = 0.5 such that production outcomes remain in the flat part under truthful reporting. The performance ratio is
equal to one only in this limit case.
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Figure 5: Auction outcome depending on payment rule for a normally distributed production

Figure 6: Auction outcome depending on payment rule for a uniformly distributed production

30



cautious strategy is the global maximum for small w and large η. The local maximum on the
right consists of overestimating expected production to maximize the expected compensation the
contractor obtains for “lower than expected” production outcome. This risky strategy corresponds
to the global maximum for large w and small η. Switching from one side to another of the (w, η)

discontinuity line, which corresponds roughly to the “white convex curve” in Figure 6d, generates
a discontinuity in the risk premium as can been seen in Figure 6b.

A consequence of this discontinuity is that under the uniform distribution, optimal reporting
is always either a strict overestimation or a strict underestimation when (w, η) 6= (0, 0). Con-
sequently, any payment rule R(w,η) differing from the linear contract is manipulable. On the
contrary, such discontinuity does not exist under the normal distribution and we observe a (w, η)

curve (close to the line η = 0.2 · w) for which the payment rule is strategy-proof.

Figure 7: Producer’s expected payoff as a function of q0
q̄

under the uniform distribution

Under the normal distribution and when there is at least one strategic firm, we see from Figures
5b and 5c that a higher w or a higher η are in all cases associated with a higher BEC: the linear
contract (w, η = 0) minimizes the BEC. The extra cost generated by using another payment rule
R(w,η) is typically much larger when there is a single strategic firm: this reflects the fact that the
surplus captured by the strategic firm is of a larger order of magnitude than the risk premium.
But even in the absence of such surplus, i.e. for strategy-proof payment rules, departing from
the linear contract increases the BEC: the intuition is that for any given w > 0, the punishment
η > 0 needed to guarantee strategy-proofness is so large that it exacerbates the risk more than it
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is mitigated by the insurance range.
The picture is different and more subtle for the uniform distribution. The performance depends

crucially on which side of the line of discontinuity the subject lies. On the right-hand side, for
which strategic firms overestimate production, the impact of parameters w and η is similar to the
case with the normal distribution. However, if we wish to minimize the BEC, we would rather
focus on the range of parameters on the left-hand side of the discontinuity line where the BEC
is much lower. Over this range and when there is at least one strategic firm, the BEC does not
increase but rather decreases with w and η. The BEC-minimizing contract within the square
[0, 0.5]2 corresponds to the intersection of the discontinuity line with the line η = 0.5 where w is
approximately equal to 0.375. For such a contract, compared to the linear contract, the BEC is
lowered by 1.31% when several firms are strategic, by 1.37% when a single firm is strategic and
by 1.16% when all firms are truthful. However, adopting such a payment rule might be risky:
The contract designer would most likely not have sufficient information to precisely determine the
optimal payment rule, and a slight mistake may result in producers switching to the risky strategy
(i.e., moving to the right side of the discontinuity line), which would dramatically increase the
BEC. For instance, when several firms are strategic, if firms’ relative risk aversion coefficient γ
is equal to 0.9, then the contract that was optimal with γ = 1 would instead underperform the
linear contract by 2.56%.

In conclusion, payment rules with punishments may bring a better outcome than a standard
linear payment rule in some cases. However, adopting such payment rules would remain risky
as imprecise information about the production distribution or firms’ preferences may lead the
designer to choose an inadequate payment rule resulting in larger losses than the potential gains.
From a robust mechanism design perspective (Bergemann and Morris, 2012), the linear contract
seems a safe choice.

8 Discussion and extensions

Our baseline model leaves out aspects that are important in most procurement contracts. In
particular, it assumes that the production distribution is independent of any effort provided by
the firm, that the firms have fixed costs alone, that firms are perfectly symmetric in all dimen-
sions (except for strategic behavior) and finally that the manipulation being studied is cost-free.
Hereafter we comment on how our results would be affected by a modification of our model to
account for moral hazard, for observable variable costs, for asymmetry between firms and last for
costs incurred by strategic reporting of q0. First of all, let us delineate the theoretical status of
the linear contract by clarifying what would be the socially optimal contract when firms are risk
neutral.
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Optimal contracts under risk neutrality

Let us consider an environment with possibly asymmetric risk neutral firms. Each firm i =

1, . . . , N is characterized by the cost function Ci : Fsp 7→ R+ ∪ {+∞}. After signing the contract
with the buyer, the contractor chooses the production distribution which maximizes its expected
payoff. The buyer is assumed to value production linearly and let p̄ > 0 denote the buyer’s value
per quantity produced. The (expected) social welfare when contractor i chooses distribution f is
then equal to p̄ ·Ef [q]−Ci(f). Let (i∗, f∗) denote the corresponding welfare optimal allocation.41

If the payment rule takes the form p · q + b where firms bid on the fixed cash payment b in
a second price auction, then bidding bi = −maxf∈Fsp{p · Ef [q] − Ci(f)} is a (weakly) dominant
strategy for each firm i. When the buyer sets p = p̄ the equilibrium allocation is socially optimal:
the winning bidder is firm i∗ and it chooses production distribution f∗, since the payment rule
makes its payoff congruent with the social welfare. This design provides marginal rewards to
the contractor which is the key ingredient to guarantee social optimality.42 This efficient contract
design corresponds to the so-called “cash auctions” in the contingent auction literature. Departure
from this design (e.g., to share risk) is known to generate social inefficiencies either in terms of
moral hazard (Laffont and Tirole (1986) and McAfee and McMillan (1987)) or in terms of adverse
selection (Che and Kim, 2010).

The linear contract where firms bid on the unit price p (without cash payment b) is prone to
such inefficiencies. In the second price auction bidding min{p ≥ 0|maxf∈Fsp{p·Ef [q]−Ci(f)} ≥ 0}
is a (weakly) dominant strategy for each firm i, and the equilibrium allocation (ieq, feq) belongs
to Argmax(i,f){peq ·Ef [q]−Ci(f)} where peq denotes the equilibrium price. If peq < p̄,43 then the
contractor has lower incentives to upgrade its production: informally, if the most efficient firm
i∗ wins the auction, then the equilibrium expected production will be lower than that under the
optimal distribution f∗. Furthermore, there is no guarantee that i∗ wins the auction: a firm with
lower fixed costs but which is less efficient in upgrading production could outbid the most efficient
firm i∗. However, assuming the equilibrium price peq is not far from p̄, the linear contract would
still be “approximately efficient” in terms of social welfare.44,45

41To simplify the discussion, we consider here that the set Argmax(i,f){p̄ · Ef [q]− Ci(f)} is a singleton.
42In a related manner, Rogerson (1992) shows that providing marginal rewards guarantees social optimality in

a setup which includes ex ante private investments from the competing bidders. Hatfield, Kojima, and Kominers
(2018) establishes a converse result and provides approximate versions.

43If peq > p̄, then the buyer should prefer not to contract with the winning firm.
44From the equilibrium conditions, we have peq · Efeq [q]−Cieq (feq) ≥ peq · Ef∗ [q]−Ci∗(f∗), which implies that

the equilibrium social welfare p̄ ·Efeq [q]−Cieq (feq) is greater than p̄ ·Ef∗ [q]−Ci∗(f∗)− (p̄−peq) · [Ef∗ [q]−Efeq [q]],
i.e. the optimal social welfare minus the term (p̄− peq) · [Ef∗ [q]− Efeq [q]].

45In a related manner, Hatfield et al. (2018) shows that a mechanism providing approximately marginal rewards
is approximately efficient (for any type realization). On contrary, our approximate efficiency claim relies on the
assumption that bidders’ equilibrium payoffs are close to marginal rewards, which corresponds in our case to p
being close to p̄.
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Beyond multiplicative payment rules

Our analysis can be adapted straightforwardly to the class of additive payment rules where the
remuneration takes the form A · R(q, q0) + b with A > 0 and where b corresponds to the auction
price while the winning bidder is determined by the offer with the lowest (possibly negative) bid.
Our definition of production-insuring rules (that suits the multiplicative framework) also suits
the additive setup if the corresponding linear benchmark now becomes the remuneration rule
A · q + b. In particular, Proposition 3 extends to this setup: production-insuring payment rules
still constitute an improvement over the linear benchmark when firms are truthful. Furthermore,
the same qualitative pitfalls hold when some firms are strategic: e.g. when firms are risk neutral
and when there is a single strategic firm, the strategic firm captures the non-competitive rents
A · (maxq0 Ef [R(q, q0)] − Ef [R(q, q̄)]) ≥ 0, an expression which differs from the one we have
derived if A 6= pT .46 More generally, Definition 1 suits any remuneration rule taking the form
A(b) · R(q, q0) + B(b), with A(b) > 0, because it implies that Ef [U(A(b) · R(q, q0) + B(b))] ≥
Ef [U(A(b) · q + B(b))] for any concave function U and any bid b. The sole difference from our
analysis is qualitative: the exact expression of the BEC depends on how functions A(.) and B(.)

are specified.

Moral hazard

Instead of inviting bidders to report their idiosyncratic reference production, another approach
for the buyer would consist of setting the reference production, bearing in mind that the con-
tractor will make ex post efforts to match its expected production to the reference production.
As formalized below, our results in Section 4 could be reinterpreted from this moral hazard per-
spective: insurance provision would reduce the contractor’s incentives to upgrade its expected
production compared to the linear contract and then prevent to implement the socially optimal
level of effort.47

Suppose that after signing the contract with the price p > 0 and the payment rule R(q, q0), the
contractor chooses its expected production q̄, which generates the cost C(q̄). Let us assume that
the contractor is risk neutral, the cost function C : R+ 7→ R+ is increasing and strictly convex and
that the distribution Fq̄ belongs to Fsp. Hence the level of effort q̄ generates the private payoff
p · Efq̄ [R(q, q0)] − C(q̄) for the contractor. Under the linear contract, the optimal level of effort

46From this narrow perspective, lowering A would reduce the buyer’s expected cost. However, this is an artefact
of our baseline model which leaves out moral hazard and adverse selection, both pleading in favor of setting A = p̄,
the buyer’s value per quantity produced, as argued above.

47See Shavell (1979) for a seminal contribution on an insured agent’s effort reduction in a model where the
random variable is binary. Note also that Tirole (1997) criticized the contract proposed by Engel et al. (2001) on
the grounds that hedging highway franchises against demand risk would kill the incentives to upgrade quality and
then reduce demand.
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for the contractor is equal to [C ′]−1(p).
For a given price p, if the buyer designs a production-insuring48 payment rule R(., q0) where

q0 is set to the contractor’s optimal level of effort under the linear contract, then the contractor’s
optimal level of effort can not be larger q0. As a corollary, we obtain that for any price p < p̄, where
p̄ is the buyer’s value per unit, it is impossible to ensure that the contractor provides the socially
optimal level of effort q̄∗ := [C ′]−1(p̄) while offering a payment rule that is production-insuring for
this same level of effort. Formally, if p < p̄ and if the buyer sets the reference production q̄∗, then
the contractor would strictly benefit from shirking, i.e. providing an effort strictly lower than q̄∗.
The formal proof is detailed in the SA. In other words, the reduced incentives to make efforts
when p < p̄ under the linear contract are reinforced under a production-insuring payment rule.49

Similarly to the results in Section 5, we expect at the auction stage that the equilibrium price
would be lower under a production-insuring payment rule than under the linear rule but that this
effect is deceptive, the extra cost from socially sub-optimal efforts being borne ultimately by the
buyer.

Variable costs

In line with our case study of RES-E generation, we assume in our baseline model that there is
no variable cost incurred by production. Other applications may however require an extension of
this model. E.g., in procurement for infrastructure projects (studied by Bolotnyy and Vasserman
(2019) and Luo and Takahashi (2019)), the analog of the production risk corresponds to the
quantity of inputs needed for the project and those quantities (which are random variables from the
perspective of the auction stage) do not solely shape the payment rule but also involve (physical)
costs for the supplier. With a fixed cost to build the production capacity and then no variable
costs associated with production, our renewable energy application is a kind of exception.

Suppose that actual production q leads to the variable cost C̃(q) in addition to the fixed
cost C. Our analysis can be adapted straightforwardly to this framework if we assume that
these variable costs are observable ex post, or equivalently if the function C̃(.) is known by the
contractor: according to our notation, it would consist of replacing the payment rule p · R(q, q0)

by the function p ·R(q, q0)+C̃(q). In this more general setup, the analog of the linear FiT (resp. a
production-insuring rule) consists first of reimbursing the observable variable costs C̃(q) and then
adding to this the linear transfer p · q (resp. a term p ·R(q, q0) where q0 is the reported reference
production and with R(q, q0) ≥ q if and only if q ≤ q0). In particular, if the cost function C̃ is

48Here, the properties of a production-insuring payment rule as stated in Definition 1 will apply conditionally
on the contractor providing a level of effort q̄ matching the q0 set by the buyer, rather than conditionally on the
contractor reporting its true q̄ as q0.

49We also show under additional technical restrictions that the contractor has an incentive to reduce its effort
even if p = p̄.
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linear, then the analog of the linear FiT remains a linear payment rule. From this point of view,
departing from the commonly used unit price contracts to hedge against ex post risk would raise
the same kind of issues.

Asymmetry between firms

In our baseline model, all firms have the same production distribution F , the same investment
cost C and the same utility function U . Let us now discuss how our results from Section 5
change in the presence of asymmetries. Consider for simplicity two firms indexed by i = 1, 2 and
characterized by the primitives Ci, fi and Ui. We assume below complete information, meaning
that all primitives (Ci, fi and Ui, i = 1, 2) are common knowledge. Let us denote pLi the zero
surplus bid of firm i under the linear contract. Without loss of generality, let us assume that firm
1 is dominant under a linear contract, i.e. pL1 < pL2 . Similarly, let us denote pTi (resp. pSi ) the
zero surplus bid of a truthful (resp. strategic) firm i under a given production-insuring contract
and say that firm i is dominant under the truthful/strategic paradigm if it has the lowest zero
surplus bid in the corresponding paradigm. Next we always make the implicit assumption that
the production-insuring contract of interest is manipulable and that strategic firms overstate their
reference production: for any given price p and any given winning firm, the BEC is higher if the
winning firm is a strategic.

In equilibrium with a linear contract both firms bid pL2 , the BEC is equal to pL2 · Ef1 [q] and
the dominant firm wins and captures the surplus (pL2 − pL1 ) · Ef1 [q].50 One noteworthy twist
when switching to a production-insuring payment rule is that the winning firm might not be the
same as under the linear contract: which firm is dominant depends not only on the contract but
also on the truthful/strategic paradigm considered (in particular because bidder i’s benefits from
misreporting depend on the spread of its production distribution spread and its risk aversion).
Given that the winning bidder’s identity might change and given potential discrepancies between
firms’ expected production, let us now consider as our performance criterion the buyer’s expected
cost divided by the expected production, further referred to as the per-unit BEC.

If the two firms are homogeneous regarding truthful/strategic behavior and it is common
knowledge, then we reach conclusions similar to those in Section 5. Given Propositions 3 and 4,
we have pSi < pTi ≤ pLi with the last inequality being strict if firm i is strictly risk averse. We
obtain thus that the equilibrium price bid when both firms are truthful (resp. strategic), which
is equal to max{pT1 , pT2 } (resp. max{pS1 , pS2 } ), is lower than the equilibrium price bid under the
linear contract. When firms are truthful, the price bid and the per-unit BEC match and we
conclude then that the production-insuring contract outperforms the linear contract. When firms

50As before (see Footnote 25), we assume that ties are broken in favour of the firm that makes a strictly positive
surplus.
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are strategic the equilibrium price bid is lower than under the linear contract, but as before we
cannot conclude on how the equilibrium per-unit BEC will be affected.

When a single firm is strategic, the picture is quite different in the presence of asymmetry.
As developed below and as in Burguet and Perry (2007), the impact of the bid manipulation on
buyer’s cost depends crucially on whether it is the strategic firm or the truthful firm which is
dominant. Next we compare the equilibrium per-unit BEC when a single firm is strategic with
the case when both firms are truthful.51

If the strategic firm (say firm 1) is dominant under the truthful paradigm (i.e. pT1 < pT2 )
then it still wins at price pT2 and also benefits from misreporting q0. The surplus due to strategic
reporting and due to its dominant position ‘are added to one another’. Hence the per-unit BEC
increases when a single firm becomes strategic.

If the truthful firm (say firm 2) is dominant under the truthful paradigm (i.e. pT2 < pT1 ),
then we distinguish three different cases. Contrary to the model developed in Section 5, here the
equilibrium depends on whether the truthful firm is aware or not that its competitor is strategic.

In one case the truthful firm is strongly dominant such that pT2 < pS1 , and aware that its
competitor (firm 1) is strategic. Firm 2 then still wins the auction but gives up part of its surplus
by bidding pS1 , i.e. lower than its bid when both firms are truthful. In sharp contrast with the
previous case, the presence of a strategic firm is here unambiguously beneficial to the buyer. In a
second case, we assume that firm 2 does not know that firm 1 is strategic. Then firm 1 wins the
auction by bidding slightly below pT1 , while firm 2 presumes it can win the auction by bidding pT1 .
In this case, the presence of a single strategic firm is unambiguously detrimental. In a third case,
the truthful firm is dominant under the truthful paradigm (pT2 < pT1 ) but only slightly insofar
as pT2 > pS1 and we assume furthermore that firm 2 knows that firm 1 is strategic. Then the
strategic firm is able to win the auction by bidding (slightly below) pT2 . In this case there are two
conflicting effect at work: On the one hand, the equilibrium price bid is lowered by the presence of
a strategic firm which increases the competitive pressure on the price bid. Second, the deceptive
effect associated to misreporting is at work. The overall effect is ambiguous.

The main insight we obtain is that bid manipulations can have a pro-competitive effect when
bidders are asymmetric. However, this insight holds only when the strategic firm faces a dominant
truthful firm such that manipulations reduce bidders’ surplus.52

51In the special case where firms are risk neutral, then this corresponds to the comparison between the production-
insuring contract and the linear contract.

52In an incomplete information model for the first price auction with favoritism, Burguet and Perry (2007) show
surprisingly that the manipulation is beneficial to the buyer when the dishonest supplier is a strong bidder.
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Costly manipulation

Our model can be viewed as one where the cost of falsification is binary, either zero for strategic
bidders or infinity for truthful bidders. In practice, inflating q0 involves some costs (because you
need either to produce a fake justification for it, or to corrupt the agent in charge of the technical
evaluation of the project). Following Maggi and Rodriguez-Clare (1995), let us briefly consider
a simple model where the falsification cost is a smooth increasing function of the magnitude
of the difference between the reported reference production and the (true) expected production
q̄. Under risk neutrality, then it is straightforward given Proposition 2 that the optimal report
with such falsification costs would lie somewhere between q̄ and q∗0 the optimal report without
falsification costs. From this perspective, our results are a kind of upper bound to the increased
BEC resulting from misreporting. Nevertheless, from a welfare perspective, falsification is also a
wasteful activity.

9 Conclusion

We study procurement auctions with ex post risk. In such environments, it is tempting for the
buyer to design risk sharing contracts. We have shown that a hedging instrument used in France
to subsidize offshore wind farms suffered from large pitfalls: the cure is likely to produce a worse
net result in terms of buyer’s cost. In addition, reducing risk premiums seems a second order
issue in this specific application, in contrast to environments where risks are cumulative.53 Both
our theoretical analysis and our numerical investigations support the insight that departing from
linear contracts (that are non-manipulable) is a risky bet. However, the class of payment rules
we have analyzed rely on two important restrictions. On the one hand, bidders are free to report
any reference production. On the other hand, the hedging instrument is static: it does not use
the fact that in some applications (including RES-E), the outcome can be modelled as a vector
of independent draws from a common distribution.

These restrictions have been relaxed by some countries who used innovative RES-E subsidy
designs. In Brazil, the analog of the reference production is certified by a third party based on wind
measurements, while in Germany it is determined according to administrative rules independently
of the specific characteristics of the project.54 It may be thought that this would resolve the pitfalls
we have identified when firms self-report their reference production. Nevertheless, if the reference

53In Engel et al. (2001), risk concerns demand for a highway and is related to future GDP growth. In Ryan’s
(2020) auctions for fossil power plants, risk concerns future coal prices. Spurred by the European Commission,
many European countries have shifted their subsidy design for RES-E in the direction of Feed-in-Premium (FiP)
where producers are free to sell their production on the market and then receive a premium per MWh as a revenue
complement. In FiP contracts, risk concerns future electricity prices.

54See the report D4.1-BRA (2016) of the AURES project and Bichler et al. (2020) for details.
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production is mis-estimated (in relative terms) across the competing projects (due to asymmetric
information or if the third party can be corrupted by some bidders), then it would lead to the
same kinds of inefficiencies. In Brazil, the payment rule is not additive across years but involves
an instrument that smooths the revenue across years: e.g., if the outcome is low in the first year,
then the producer is not penalized on a short term basis but could compensate this shortage
by a high production outcome in a subsequent year. More generally, as argued in Thomas and
Worrall (1990) with a repeated principal-agent setup with i.i.d. shocks, efficient risk sharing relies
on dynamic contracts and repeated interactions allow asymmetric information to be reduced.55

Dynamic contracts are a promising avenue for future research. Nevertheless, we emphasize that
many procurement applications do not fit into a repeated screening setup.

55See Malin and Martimort (2016) and Krasikov and Lamba (2021) for more recent contributions on optimal
dynamic contracts with risk aversion and cash constraints, respectively.
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Appendix 1: Modelling production risk and our assumptions on
producers’ costs

Our simulations of producers’ equilibrium bidding behaviour and then of the corresponding ex-
pected public spending are based on a production distribution built from historic simulated data
and this for each of the six offshore wind farm sites that were actually auctioned under the
production-insuring payment rule we have presented in Section 2. The characteristics of those
projects (name, location, size in MW) are listed in Table 1.

Hourly electricity productions of these farms are simulated for 19 years (from 2000 to 2018)
using the model developed by Staffell and Pfenninger (2016) and this thanks to the website
https://www.renewables.ninja/ to which the location and the characteristics of the turbines
have been given as inputs. The production is simulated considering the full capacity of each farm.56

In most cases, data needed to simulate production with the turbine type actually implemented
by the winning bidder (most often the Adwen AD 8-180 turbine) was not available. For the six
projects, we consider instead the Vestas V164 8000 turbine which seems the most closely related
kind of turbine for such projects.

Historic hourly production obtained from the simulator is then aggregated at the quarterly
level. Then we bootstrap our 19 years of aggregated quarterly data to generate the distribution
of yearly production: quarters are randomly drawn and summed to generate yearly production
points. This resampling approach to generate more than our 19 original years of production is
relevant if there is no significant autocorrelation between quarterly aggregate production.57

At the bidding stage, firms do not have a perfect knowledge on their average capacity factor
which does not depend solely on their technological choice (e.g., the size and the height of the
turbine) but also on the local meteorological conditions which are estimated from measurement
mats. In the past, such estimations has suffered from important bias: Lee and Fields’ (2020)
survey report an over-prediction of the median of the capacity factor distribution around 4%. The
methodologies have been improved with the aim to reduce bias, but they still involve economically
relevant errors: e.g. Jourdier and Drobinski (2017) show that the commonly used statistical
model based on Weibull distributions lead to a mean absolute error around 4 or 5% of the average
electricity production. In order to account for such noise in the estimation of the capacity factor,

56Staffell and Pfenninger’s (2016) model is for an isolated turbine. Therefore, the production of each farm (which
consists of many turbines) is likely to be slightly overestimated due wake effects.

57The Saint-Brieuc site suffers from significant autocorrelation between quarterly aggregate production. There-
fore we do not further consider results related to this site which differ importantly from the other sites.
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the distribution of the vector of yearly-production (q1, . . . , q20) is build in the following way: each
yearly-production qt is the product of a yearly-dependent production drawn independently across
years according to the bootstrapped distribution defined above with 1 + ε where ε is a non-year-
dependant noise distributed according to a centered normal distribution with the variance σ2. We
assume that σ = 6.3%, which matches a mean absolute error of 5%. The noise ε for the capacity
factor estimation is the main driver for the risk premiums relative to net present value of the
subsidy contracts: contrary to weather risk, this additional risk is not averaged out over the 20
years of production.

Table 1: Characteristics on the wind farm projects (source : European Commission (2019) and
French Energy Regulatory Commission (2011, 2013)

Site Location Capacity IC (CAPEX) OC (OPEX/year) FiT awarded
(lat.,long.) in MW M e M e e/MWh

Le Tréport (50.1, 1.1) 496 2000 105 131
Ile d’Yeu (46.9, -2.5) 496 1860 110 137
Fécamp (49.9, 0.2) 497 1850 75 135.2

Courceulles (49.5, -0.5) 448 1600 69 138.7
Saint-Brieuc (48.8, -2.5) 496 2200 63 155
Saint-Nazaire (47.2, -2.6) 496 1800 78 143.6

We consider throughout the paper that producers are fully homogeneous, meaning :

• Producers do not receive any private information on future production distribution which
does not depend on the winning bidder’s identity. The revenue distribution derived from
any given contract is thus the same across all producers.

• Producers have the same costs made of two components: a fixed cost IC (reflecting the
initial investment at the date t = 0) and a yearly operational cost OC (reflecting operation
and maintenance for each year t = 1, · · · , 20). Our assumptions for the cost for the various
projects come from a reported of the European Commission.58 are reported in Table 1.

Appendix 2: Proofs of our main theoretical results

Throughout the appendix we use the notation δ := sup{t ≥ 0|f(q̄(1− t)) = 0}. For f ∈ Fsp, note
that the support of f corresponds then to the interval [q̄(1− δ), q̄(1 + δ)] and that δ ∈]0, 1].

58https://ec.europa.eu/competition/state_aid/cases1/201933/265141_2088479_221_2.pdf
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Proof of Proposition 2
Let us first show that if q0 ≥ q̄, then Ef [R(q, q0)] ≥ Ef [R(q, q̄)] = q̄ for any f ∈ Fsp (where

the last equality comes from the assumption that R(., .) is production-insuring) or equivalently
Ef [q · zq0( qq0 )] ≥ q̄. Take q0 ≥ q̄ and let α := 1− F (q0) ≤ 1

2 .
Consider first the case where α = 0, that is when q0 is higher than any realization of q.

Then Ef [R(q, q0)] =
∫ q0

0 q · zq0( qq0 )dF (q) ≥
∫ q0

0 qdF (q) = q̄, since from Lemma 1 we have ∀q ≤
q0, zq0( qq0 ) ≥ 1.

Consider now the complementary case where α > 0. Let Gq0 : R+ → R+ denote the function
defined by:

for q ≥ q0, Gq0(q) =
1 + F (q)− 2F (q0)

2α

for q ≤ q0, Gq0(q) = 1−Gq0(2q0 − q).

As a CDF, the function F is non-decreasing and then Gq0 is also non-decreasing. Since
f ∈ Fsp, we have ∀q ≥ 2q̄, F (q) = 1. Therefore ∀q ≥ 2q0 (which implies q ≥ 2q̄), Gq0(q) = 1, and
consequently Gq0(0) = 0. Now let gq0 denote the derivative of Gq0 , for q ≥ q0, gq0(q) = f(q)

2α and
for q ≤ q0, gq0(q) = gq0(q0 + (q0 − q)). Then Gq0 is the CDF and gq0 the PDF of a symmetric
distribution with expected value q0. We can then conclude that Egq0 [q · zq0( qq0 )] = Egq0 [q] = q0.

Let us define the function Hq0 : R+ → R+ by Hq0(q) := F (q)− 2α ·Gq0(q), in such a way that
f(q) = H ′q0(q) + 2α · gq0(q). Then we may write :

Ef [qzq0(
q

q0
)] =

∫ 2q̄

0
qzq0(

q

q0
)dF (q) =

∫ 2q0

0
qzq0(

q

q0
)dF (q)

=

∫ 2q0

0
qzq0(

q

q0
)H ′q0(q)dq + 2α · Egq0 [qzq0(

q

q0
)] =

∫ 2q0

0
qzq0(

q

q0
)H ′q0(q)dq + 2α · q0

For q ≥ q0, 2αgq0(q) = f(q) and therefore H ′q0(q) = 0. Moreover, ∀q ≤ q0, z( qq0 ) ≥ 1. We
obtain therefore :

Ef [q · zq0(
q

q0
)]− 2α · q0 =

∫ q0

0
q · zq0(

q

q0
)H ′q0(q)dq

≥
∫ q0

0
q ·H ′q0(q)dq =

∫ q0

0
qdF (q)− 2α

∫ q0

0
qdGq0(q)

= q̄ −
∫ 2q̄

q0

qdF (q)− 2α

∫ q0

0
qdGq0(q)

= q̄ − 2α

(∫ 2q̄

q0

qdGq0(q) +

∫ q0

0
qdGq0(q)

)
︸ ︷︷ ︸

=Egq0 [q]=q0

= q̄ − 2α · q0.
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Finally, Ef [R(q, q0)] ≥ q̄ = Ef [R(q, q̄)] (for any q0 ≥ q̄). By symmetry, we can show that
Ef [R(q, q0)] ≤ q̄ for any q0 ≤ q̄.

To prove that the payment rule is manipulable, then for any given f ∈ Fsp, let us build q0 > q̄

such that Ef [R(q, q0)] > q̄. If f ∈ Fsp, there are two possibilities: 1) f is a uniform distribution,
2) there exists a point q′ > q̄ such that f(q′ − t) > f(q′ + t) > 0 for any t ∈]0, q′ − q̄].

Consider first the case where f is a uniform distribution on its support [(1 − δ)q̄, (1 + δ)q̄].
Let q′ ≡ (1 + δ)q̄. For any realization q in the support of f , we have zq′( qq′ ) ≥ 1. Furthermore,
from Lemma 1, there is a subset of the interval [q̄, q′] which has positive measure and on which
zq′(

q
q′ ) > 1. Finally, we obtain that Ef [q · zq′( qq′ )] > Ef [q].
Consider now the case where there exists a point q′ > q̄ such that f(q′ − t) > f(q′ + t) > 0

for any t ∈]0, q′ − q̄]. Since the latter interval is non-null, we know that for such q′, F (q′) < 1.
To show that Ef [R(q, q′)] > q̄ = Ef [R(q, q̄)] using the same arguments as above, it is sufficient to
show that

∫ q′
0 qzq′(

q
q′ )H

′
q′(q)dq >

∫ q′
0 qH ′q′(q)dq.

For q ∈ [q̄, q′], we have H ′q′(q) = f(q)− 2αgq′(q) = f(q)− f(2q′− q). Since f is non-increasing
for q > q̄ and f(q′ − t) > f(q′ + t) > 0 for any t ∈ (0, q′ − q̄], then q̄ < q < q′ < 2q′ − q implies
f(q) > f(2q′ − q) and therefore H ′(q) > 0 for any q ∈ [q̄, q′]. Moreover we know from Lemma
1 that there is a subset of [q̄, q′] with positive measure in which zq′(

q
q′ ) > 1. We then obtain∫ q′

q̄ qzq′(
q
q′ )H

′
q′(q)dq >

∫ q′
q̄ qH ′q′(q)dq which further implies

∫ q′
0 qzq′(

q
q′ )H

′
q′(q)dq >

∫ q′
0 qH ′q′(q)dq

(since zq′(q) ≥ 1 and H ′q′(q) = 2F (q′)− 1 ≥ 0 for q ≤ q′ given that q′ ≥ q̄). Q.E.D.

Proof of Proposition 3
As shown in the SA, we have that pL and pT are characterized by the zero surplus conditions:

Ef [U(pL · q)] = Ef [U(pT ·R(q, q̄))] = U(C) and the function p 7→ Ef [U(p ·R(q, q̄))] is continuously
increasing. Applying Definition 1, we have Ef [U(pL ·R(q, q̄))] ≥ Ef [U(pL ·q)], the inequality being
strict if firms are strictly risk averse and standing as an equality if firms are risk neutral. We then
obtain the fact that pT ≤ pL. Since Ef [R(q, q̄)] = q̄ for any production-insuring payment rule
when f ∈ Fsp, we then obtain the fact that Ef [pT ·R(q, q̄)] ≤ Ef [pL · q̄]. The previous inequalities
are strict if firms are strictly risk averse, and stands as equalities if firms are risk neutral.

Q.E.D.

Proof of Proposition 4
As shown in the SA, we have that pS is characterized by the zero surplus condition:

maxq0≥0 Ef [U(pS · R(q, q0))] = U(C) and the function p 7→ maxq0≥0 Ef [U(p · R(q, q0))] is con-
tinuously increasing.

In order to show that pS ≤ pT , we proceed by contradiction. Suppose that on the contrary
that pS > pT . Then we have ΠS(pS) = maxq0≥0 Ef [U(pS · R(q, q0))] ≥ Ef [U(pS · R(q, q̄))] >
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Ef [U(pT · R(q, q̄))] = ΠT (pT ). From (2) (resp. (3)), the last (resp. first) term is equal to U(C)

and we have thus raised a contradiction.
If the payment rule is manipulable at price pT , then we have maxq0≥0 Ef [U(pT · R(q, q0))] >

Ef [U(pT · R(q, q̄))]. Given (2), then the last term is equal to U(C). If pS = pT and given (3),
then maxq0≥0 Ef [U(pT ·R(q, q0))] = U(C) and we have thus raised a contradiction. We have thus
shown that if the payment rule is manipulable at price pT , then pS < pT . Note that Proposition
2 establishes that if firms are risk neutral and if f ∈ Fsp, all production-insuring payment rule
are manipulable.

If the payment rule Rfull provides full insurance against production risk to truthful bidders
and is homogeneous of degree 1, then we obtain from Proposition 8 that a strategic bidder will
not be fully insured against production risk: Varf [Rfull(q, qS)] > Varf [Rfull(q, q̄)] = 0 if qS ∈
Argmaxq0∈R+ Ef [U(pSR(q, q0))]. From the zero surplus conditions (2) and (3), we have ΠS(pS) =

ΠT (pT ). Since the payoff of the truthful firm is deterministic (under Rfull), we have ΠT (pT ) =

U(pT q̄).
Ef [U(pSR(q, qS0 ))] = U(pT q̄) since the payoff of the truthful bidder is certain thanks to full

insurance by the payment rule.
If bidders are strictly risk averse then U is strictly concave, given Rfull(q, qS) is not de-

terministic, we have that U(Ef [pSR(q, qS)]) > Ef [U(pSR(q, qS))] = ΠS(pS). Combined the
previous equalities, we have then U(Ef [pSR(q, qS)]) > U(pT q̄) which further implies that
pS · Ef [R(q, qS)] > pT · q̄, or equivalently that the BEC in the equilibrium with strategic firms is
greater than the BEC in the equilibrium with truthful firms. Q.E.D.

Proof of Proposition 5
If U is a CRRA utility function (which includes the case where firms are risk neutral), then the

set Q∗0(p) does not depend on p (as shown in the SA). Furthermore, we assume that the payment
rule is manipulable and thus that q̄ /∈ Q∗0(p), ΠS(pT ) > ΠT (pT ) = U(C) and pS < pT . The propo-
sition makes also the implicit assumption that strategic firms use the same optimal (mis)report
q∗0 = qS = qS−T both when several firms are strategic and when a single firm is strategic. Then
we obtain for any manipulable payment rule that pT · Ef [R(q, q∗0)] > pS · Ef [R(q, q∗0)], i.e. that
the BEC when there is a single strategic firm is strictly greater than when there are several
strategic firms. Furthermore, if U is linear, then ΠS(pT ) > ΠT (pT ) = U(C) is equivalent to
pTEf [R(q, q∗0)] > pTEf [R(q, q̄)] = C. If the payment rule is linear, then we have under risk neu-
trality that ΠS(pT ) = ΠT (pT ) = U(C) which is equivalent to pTEf [R(q, q∗0)] = pTEf [R(q, q̄)] = C.
Q.E.D.
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Proof of Proposition 6
The equilibrium analysis is analogous to Maskin and Riley (1985): having a low (high) val-

uation corresponds here to being a truthful (strategic) firm. Note that the assumption that
ΠS(pT ) > ΠT (pT ) guarantees that strategic firms make positive surplus and the equilibrium in-
volves a mixed strategy. On the contrary, if ΠS(pT ) = ΠT (pT ), then all firms would submit the
price bid pT . As in Maskin and Riley (1985), we have in equilibrium that truthful bidders make
no surplus (ΠT (pT ) = U(C)) and bid thus (pT , q̄) and that all firms when strategic adopts the
same bidding strategy which involves no atoms but rather a mixed strategy where the upper
bound of the price bid distribution, denoted by pmax, is equal to pT (if pmax < pT , then strategic
bidders submitting a price bid around pmax would have a strictly profitable deviation by bidding
just below pT ). Let G(.) denote the CDF of the price bid of a strategic firm. In equilibrium,
any price bid p made as part of a mixed strategy must generate the same expected payoff, and in
particular the same expected payoff as bidding pT (under the assumption that ties are broken in
favor strategic firms). This translates into the distribution G satisfying:

[1− α+ α(1−G(p))]N−1 · [ΠS(p)− U(C)] = (1− α)N−1 · [ΠS(pT )− U(C)]. (6)

We then obtain G(p) = 1 − 1−α
α

(
N−1

√
ΠS(pT )−U(C)
ΠS(p)−U(C)

− 1
)
for any p in the support of G. Let

pmin denote the lower bound of the support of G. pmin is characterized as the unique solution of
ΠS(pmin) = (1−α)N−1 · [ΠS(pT )−U(C)]+U(C). For any α ∈ (0, 1), we have ΠS(pmin)−U(C) =

(1 − α)N−1 · [ΠS(pT ) − U(C)] > 0 = [ΠS(pS) − U(C)], and then that ΠS(pmin) > ΠS(pS) which
further implies that pmin > pS . Q.E.D.

Proof of Proposition 7
The BEC can be written as

(1− α)N · pT · Ef [R(q, q̄)] +

∫ pmax

pmin

p · Ef [R(q, q∗0(p))]dK(p) (7)

where q∗0(p) ∈ Q∗0(p) ≡ Argmaxq≥0 Π(p, q) and K(p) := 1 − (1− α + α(1−G(p)))N denotes the
CDF of the price bid of the winning bidder. If U is a CRRA utility function, then Q∗0(p) does
not depend on p (as detailed in the SA). Furthermore, if firms are risk neutral, Ef [R(q, q∗0(p))]

does not depend on the selection for q∗0(p) and is equal in particular to Ef [R(q, qS−T )]. If firms
are risk neutral, we have C = pT ·Ef [R(q, q̄)] and we then obtain from 7 the fact that the BEC is
equal to the cost C plus the term Nα · (1−α)N−1[pT ·Ef [R(q, qS−T )]−C] = Nα · (1−α)N−1pT ·(
Ef [R(q, qS−T )]− Ef [R(q, q̄)]

)
.

Consider now the case where U is a CRRA utility function and assume that Ef [R(q, q0)] ≥
Ef [R(q, q̄)] for any q0 ∈ Q∗0.
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From (7) and given that pmax = pT , the BEC is strictly smaller than

(1− α)N · pT · Ef [R(q, q̄)] + (1− (1− α)N ) · pT max
q0∈Q∗0

Ef [R(q, q0) ≤ pT max
q0∈Q∗0

Ef [R(q, q0)

and where the latter term corresponds to the BEC in an equilibrium under complete informa-
tion and with a single strategic firm choosing the reference production that maximize the BEC
among the (optimal) reports in the set Q∗0.

From (7) and given that pmin > pS , the BEC is strictly greater than

(1− α)N · pT · Ef [R(q, q̄)] + (1− (1− α)N ) · pS min
q0∈Q∗0

Ef [R(q, q0).

The BEC is thus strictly greater than the minimum of the BEC with truthful firms (pT ·Ef [R(q, q̄)])
and the lowest possible BEC with several strategic firms under complete information (which is
reached when the strategic firms choose the reference production that minimize the BEC among
the (optimal) reports in the set Q∗0). Q.E.D.

Proof of Proposition 8
In this proof, we do not assume that f is symmetric. We introduce then the notation qmin :=

inf{q ∈ R+|f(q) > 0} and qmax := sup{q ∈ R+|f(q) > 0}. Since f is atomless, then we have
qmax > qmin.

Suppose the existence of a payment rule that is homogeneous of degree 1 and such that for p > 0

and q∗0 ∈ Q∗0(p), the contractor is fully insured against production risk, meaning Varf [R(q, q∗0)] = 0

and let us establish a contradiction.
Note first that the payment rule being homogeneous of degree 1 implies that the function zq0(·)

does not depend on q0. Below we use then the shortcut notation z(.).
Let x∗min := qmin

q∗0
and x∗max := qmax

q∗0
. Since q → R(q, q∗0) is continuous and nondecreasing,

the contractor being fully insured against production risk when reporting q∗0 implies that there
exists a constant k ≥ 0 such that R(q, q∗0) = k for any realization q ∈ [qmin, qmax], and thus that
z(x) = k

q∗0

1
x , ∀x ∈]x∗min, x

∗
max[. Note that Π(p, q0) > 0 if q0 belong to the support of f . We have

then Π(p, q∗0) > 0 and then k > 0.
If the firm reports a reference production q0 ≥ q∗0, then we have that x∗minq0 ≥ qmin and the

payment rule q 7→ R(q, q0) is flat in the interval ]q0x
∗
min, q0x

∗
max[ where it is equal to k · q0q∗0 . For

q0 ∈ [q∗0,
qmax
qmin

q∗0], the contractor’s expected payoff is then given by:

Π(p, q0) =

∫ qmax

qmin

U

(
pqz(

q

q0
)

)
dF (q) =

∫ x∗minq0

qmin

U

(
pqz(

q

q0
)

)
dF (q) +

∫ qmax

x∗minq0

U

(
pk
q0

q∗0

)
dF (q)

49



=

∫ q0

q∗0

U

(
px∗minq

′ · z(x∗min
q′

q0
)

)
f(x∗minq

′)x∗mindq
′ + U

(
pk
q0

q∗0

)
[1− F (x∗minq0)] (8)

Since the function q 7→ R(q, q0) is assumed to be continuous and non-decreasing, it is differ-
entiable almost everywhere. As z(x) = R(x · q0, q0)/x · q0 (for any q0 > 0), the function z is also
differentiable almost everywhere in R+ and let z′(x) denote the corresponding derivative when it
exists and let us adopt the convention z′(x) = 0 otherwise. Recall also that U is assumed to be
differentiable and that F is an atomless CDF and is thus semi-differentiable. Let us adopt below
the convention that f correspond to its right-derivative.

From (8), we then obtain the fact that the function q0 7→ Π(p, q0) is semi-differentiable on the
interval [q∗0,

qmax
qmin

q∗0] and we have then the following expression for the right derivative:

U (px∗minq0 · z(x∗min))x∗minf(x∗minq0)−
∫ q0

q∗0

p[x∗min
q′

q′0
]2·z′(x∗min

q′

q′0
)U ′

(
px∗minq

′ · z(x∗min
q′

q′0
)

)
f(x∗minq

′)x∗mindq
′

+
pk

q∗0
U ′
(
pk
q0

q∗0

)
[1− F (x∗minq0)]− U

(
pk
q0

q∗0

)
x∗minf(x∗minq0) (9)

At the limit q0 = q∗0, (9) simplifies (the integral vanishes and F (x∗minq
∗
0) = 0) and the right

derivative of q0 7→ Π(p, q0) is then equal to

pk

q∗0
U ′(pk) + [U(px∗minq

∗
0z(x

∗
min)− U(pk)]x∗minf(x∗minq

∗
0) =

pk

q∗0
U ′(pk) > 0

since by continuity of q 7→ R(q, q∗0) at q = qmin = x∗minq
∗
0, we have x∗minq

∗
0z(x

∗
min) = k. Therefore,

starting from the reference production q∗0, the contractor would strictly increase its expected payoff
by increasing slightly its reference production, which stands in contradiction with q∗0 ∈ Q∗0(p).
Q.E.D.
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Supplementary Appendix (for online
publication)

Proof of Lemma 1

"Only if" part For a given q0 > 0 and a given ε ∈]0, 1], let f∗q0,ε denote the uniform distribution
on the interval [q0(1− ε), q0(1 + ε)]. We have that f∗q0,ε ∈ Fsp and that q̄ = q0.

Applying Definition 1 to the contract price p = 1 and when U is linear, we have that :

q0 = Ef∗q0,ε [q] = Ef∗q0,ε [q · zq0(
q

q0
)] =

∫ q0(1+ε)

q0(1−ε)
q · zq0(

q

q0
) · dq

2q0ε
=
q0

2ε

∫ ε

−ε
(1 + t) · zq0(1 + t)dt.

We then obtain the fact that
∫ ε

0 [(1 + t) · zq0(1 + t) + (1− t) · zq0(1− t)]dt = 2ε for any ε ∈ [0, 1[.
The left-hand side of this latter equation has a derivative (w.r.t. ε) almost everywhere in the
interval [0, 1] and which is equal to (1 + ε) · zq0(1 + ε) + (1− ε) · zq0(1− ε), and which should thus
be equal to the derivative of the right-hand side. Since the function zq0(.) is continuous (because
the function q → R(q, q0) is assumed to be continuous), we obtain that

(1 + ε) · zq0(1 + ε) + (1− ε) · zq0(1− ε) = 2 (10)

for any ε ∈ [0, 1].
In order to show that zq0(1+ε) ≤ 1 for any ε ∈ [0, 1], let us proceed by contradiction. Suppose

on the contrary that zq0(1+ε) > 1 for some ε ∈ [0, 1] and let then δ := inf{ε ∈ [0, 1]|zq0(1+ε) > 1}.
Since zq0(.) is continuous, we have then δ < 1 and we can also define δ ∈ (δ, 1] such that
zq0(1 + ε) > 1 for any ε ∈]δ, δ[. Since zq0(·) is continuous, we also have zq0(1 + δ) = 1.

Consider then f∗
q0,δ

the uniform distribution on [q0(1 − δ), q0(1 + δ)]. Consider a continuous
function U such that U(x) = x for x ≤ q0(1 + δ) and U ′(q) ∈]0, 1[ being strictly decreasing for
q > q0(1 + δ).59 Note that U is then increasing and concave.

Given that the function q 7→ q · zq0( qq0 ) is non-decreasing and that zq0(1 + δ) = 1 (which
implies zq0(1 − δ) = 1 given (10)), we have that q · zq0( qq0 ) ∈ [q0(1 − δ), q0(1 + δ)] for any
q ∈ [q0(1 − δ), q0(1 + δ)]. Therefore using that U(x) = x for x ∈ [q0(1 − δ), q0(1 + δ)], the
symmetry of f∗

q0,δ
around q0, and making the change of variable ε = q

q0
− 1 in (10) we obtain:

59How to build a function U satisfying such properties (which will guarantee then its existence) is left to the
reader.
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∫ q0(1+δ)

q0(1−δ)
U(q · zq0(

q

q0
))dF ∗

q0,δ
(q) =

∫ q0(1+δ)

q0(1−δ)
q · zq0(

q

q0
)dF ∗

q0,δ
(q)

=

∫ δ

−δ
q0(1 + ε) · zq0(1 + ε)dF ∗

q0,δ
(q0(1 + ε))

= q0

∫ δ

0
[(1 + ε) · zq0(1 + ε) + (1− ε) · zq0(1− ε)]dF ∗

q0,δ
(q0(1 + ε))

= 2q0 · [F ∗q0,δ(q0(1 + δ))− 1

2
] = q0 · [F ∗q0,δ(q0(1 + δ))− F ∗

q0,δ
(q0(1− δ))]

=

∫ q0(1+δ)

q0(1−δ)
q0dF

∗
q0,δ

(q) =

∫ q0(1+δ)

q0(1−δ)
qdF ∗

q0,δ
(q) =

∫ q0(1+δ)

q0(1−δ)
U(q)dF ∗

q0,δ
(q).

Note that the first and the last equalities use the assumption that U is linear on [0, q0 · (1+δ)].
We obtain thus that the difference Ef∗

q0,δ
[U(q)]− Ef∗

q0,δ
[U(q · zq0( qq0 ))] resumes to

∫ q0(1−δ)

q0(1−δ)
[U(q)− U(q · zq0(

q

q0
))]
dq

2δ
+

∫ q0(1+δ)

q0(1+δ)
[U(q)− U(q · zq0(

q

q0
))]
dq

2δ

Thanks to the change of variable ε = 1 − q
q0

and ε = q
q0
− 1 in the first and second integrals,

respectively, we obtain:

Ef∗
q0,δ

[U(q)]− Ef∗
q0,δ

[U(q · zq0(
q

q0
))] =

q0

2δ

∫ δ

δ
[U(q0(1− ε))− U(q0(1− ε)zq0(1− ε))]dε

+
q0

2δ

∫ δ

δ
[U(q0(1 + ε))− U(q0(1 + ε)zq0(1 + ε))]dε. (11)

Let us show below that in the first (resp. second) integral the function U is applied to values
where it is linear (resp. strictly concave).

For ε ∈ [δ, δ], we have zq0(1+ε) ≥ 1. From (10), we obtain for any ε ∈ [δ, δ] that zq0(1−ε) ≤ 1,
which further implies that q0(1 − ε)zq0(1 − ε) ≤ q0(1 − ε) ≤ q0 ≤ q0(1 + δ). In the first integral,
the function U is thus applied only for values below q0(1+δ) where the function U is defined such
that U(x) = x for x ≤ q0(1 + δ). We have thus that ∀ε ∈ [δ, δ]:

U(q0(1− ε)− U(q0(1− ε)zq0(1− ε)) = q0 · [(1− ε)− (1− ε)zq0(1− ε)]. (12)

Since the function ε 7→ q0(1+ε)zq0(1+ε) is non-decreasing and zq0(1+δ) = 1 (from the way we
have defined δ), then for ε ∈ [δ, δ], we have that q0(1+ε)zq0(1+ε) ≥ q0(1+δ)zq0(1+δ) = q0(1+δ).
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Besides, we note that q0(1 + ε) ≥ q0(1 + δ). In the second integral, the function U is thus
applied only for values above q0(1 + δ) where the function U is concave and with U ′(x) < 1 (for
x ≥ q0(1 + δ)). We have thus that ∀ε ∈ (δ, δ]:

U(q0(1+ε))−U(q0(1+ε)zq0(1+ε)) ≥ [q0(1+ε)−q0(1+ε)zq0(1+ε)]·U ′(q0(1+ε)) > q0(1+ε)−q0(1+ε)zq0(1+ε).

(13)
Finally, plugging (12) and (13) into (9) and using 10, we obtain:

Ef∗
q0,δ

[U(q)]− Ef∗
q0,δ

[U(q · zq0(
q

q0
))] >

q2
0

2δ

∫ δ

δ
[2− (1− ε)zq0(1− ε)− (1 + ε)zq0(1 + ε)]︸ ︷︷ ︸

=0

dε = 0.

We have thus shown that Ef∗
q0,δ

[U(q)] > Ef∗
q0,δ

[U(q · zq0( qq0 ))], which stands in contradiction
with the production-insuring assumption. On the whole we have shown that zq0(1 + ε) ≤ 1 for
any ε ∈ [0, 1]. From (10), we then obtain zq0(1− ε) ≤ 1 for any ε ∈ [0, 1[.

The remaining part of Lemma 1 to be shown is that zq0 can not be equal (uniformly) to
one in the neighborhood of one or equivalently (given that we have shown that zq0(1 + t) ≤ 1 for
t ∈ [0, 1] and that zq0 is continuous) that for all ε ∈]0, 1] we verify

∫ ε
0 zq0(1+t)dt < ε. Suppose that

zq0(t) = 1 for any t ∈ [−ε, ε] (with ε > 0) and let us establish a contradiction. Consider a strictly
concave payoff function U , the contract price p = 1 and the uniform distribution f∗q0,ε. Since zq0 is
uniformly equal to 1 on the support of f∗q0,ε, then we obtain that Ef∗q0,ε [U(q)] = Ef∗q0,ε [U(q ·zq0( qq0 ))]

which stands in contradiction with the production-insuring property.
"If" part
Consider first the case where U is linear. If Eq. (10) holds for any q0 > 0 and ε ∈ [0, 1], then

for any contract price p and any symmetric distribution f with expected value q̄ (such that the
support of f is a subset of [0, 2q̄]), using the change of variable q = q̄(1 + ε), we obtain below that
Eq. (1) stands as an equality (note that it is the first and the last equality that uses that U is
linear):

Ef [U(pqzq̄(
q

q̄
))] = U

(
Ef [pqzq̄(

q

q̄
)]

)
= U

(
pq̄

∫ 1

−1
(1 + ε)zq̄(1 + ε)f(q̄(1 + ε))dε

)
= U

(
pq̄

∫ 1

0
[(1 + ε)zq̄(1 + ε) + (1− ε)zq̄(1− ε)] f(q̄(1 + ε))dε

)

= U

pq̄ ∫ 1

0
2f(q̄(1 + ε))dε︸ ︷︷ ︸

=1

 = U(pEf [q]) = Ef [U(pq)].
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Let us now consider the case where U is strictly concave. Consider the function ϕ : λ →
U(pq̄λ) + U(pq̄(2− λ)). If U is strictly concave, then U ′(pq̄λ) < U ′(pq̄(2− λ)) as long as λ > 1.
We have thus that ϕ′(λ) = pq̄ [U ′(pq̄λ)− U ′(pq̄(2− λ))] < 0 for λ > 1.

Moreover, since f is symmetric and given (10), we have both following equations for any
function U :

Ef [U(p · q)] =

∫ 1

0

=ϕ(1+ε)︷ ︸︸ ︷
[U(p · q̄(1 + ε)) + U(p · q̄(1− ε))] dF (q̄(1 + ε))

Ef [U(p · q · zq̄(
q

q̄
))] =

∫ 1

0
[U(p · q̄(1 + ε)zq̄(1 + ε)) + U(p · q̄(1− ε)zq̄(1− ε))]︸ ︷︷ ︸

=ϕ((1+ε)zq0 (1+ε))

dF (q̄(1 + ε))

In addition to (10), we also assume that zq0(1 + ε) ≤ 1 for any ε ∈ [0, 1] and that for any
ε′ ∈]0, 1[, there exists a subset S of [0, ε′] with positive measure such that zq0(1 + t) < 1 for any
t ∈ S. Moreover, since q 7→ q · zq0( qq0 ) is non decreasing, we have (1 + ε) · zq0(1 + ε) ≥ 1 for
ε ∈ [0, 1]. For any ε ∈ [0, 1], we have thus 1 ≤ (1 + ε)zq0(1 + ε) ≤ 1 + ε ≤ 2.

The function ϕ is strictly decreasing on [1, 2] and thus on the interval [(1 + ε)zq0(1 + ε), 1 + ε]

for any ε ∈ [0, 1]. Finally we have for any ε ∈ [0, 1],

ϕ((1 + ε)zq0(1 + ε)) ≥ ϕ(1 + ε). (14)

Furthermore, for any ε′ > 0, there exists a subset S of [0, ε′] with positive measure such that
the inequality (14) is strict for any ε ∈ S.

Since f ∈ Fsp, then there exists ε′ > 0 such that the function ε→ f(q̄(1+ε)) is strictly positive
on [0, ε′]. Therefore, if we integrate the inequality (14) which is strict on a positive measure of
[0, ε], we obtain the strict inequality:∫ 1

0
ϕ((1 + ε)zq0(1 + ε))dF (q̄(1 + ε)) >

∫ 1

0
ϕ(1 + ε)dF (q̄(1 + ε))

or equivalently Ef [U(p · q · zq̄( qq̄ ))] > Ef [U(p · q)].
Last, in the remaining case where U is concave, it is straightforward according to the arguments

above (it is sufficient to integrate the weak inequality (14)) that the inequality (1) holds. On
the whole, we have established that any payment rule associated with the correction factors
{zq0(.)}q0>0 is production-insuring.

Comment: when U is concave, note that the inequality (1) holds for any symmetric distri-
bution f (even if it is not single-peaked).

Q.E.D.
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Appendix to the end of Section 4: results for a specific class of
payment rules.

As a complement to the general results on optimal reporting derived in the case where the contrac-
tor is risk neutral, we further study a much more restricted setup to provide some insights about
how a risk averse contractor reports its expected production depending on various parameters.
The setup considered is as follows:

• The payment rule denoted Rw is parameterized by w ∈]0, 1[ and is such that Rw(q, q0) = q0

if q ∈ [(1 − w)q0, (1 + w)q0] and Rw(q, q0) = q otherwise. In other words, the contractor is
perfectly insured and its remuneration depends only on reported expected production q0 as
long as its actual production is no more than w% away from q0. Beyond this interval, the
remuneration is the same as under the linear contract.

• The production risk is distributed according to F ∈ Fsp which admits a continuous PDF
f and whose support is [(1 − δ)q̄, (1 + δ)q̄] with δ ≤ w. A direct consequence of this last
restriction is that a truthful contractor would be fully insured: the whole support of its
production distribution is included in the area where the payment does not depend on q.

To derive the optimal reporting of q0, we consider the contractor’s payoff in four separate cases
regarding the chosen q0 which cover all possible reported q0 (given the assumption δ ≤ w):

1. q0 is such that actual production never falls in the insured range;

2. q0 is such that actual production always falls in the insured range;

3. q0 is such that actual production sometimes falls in the insured range, sometimes above;

4. q0 is such that actual production sometimes falls in the insured range, sometimes below;

Case 1 Actual production never falls in the insured range if q0 is chosen such that either
(1 + δ)q̄ < (1−w)q0 or (1− δ)q̄ > (1 +w)q0, i.e., for any q0 outside the interval [ 1−δ

1+w q̄,
1+δ
1−w q̄]. For

such q0, the contractor’s expected payoff is Ef [U(pR(q, q0)] = Ef [U(pq)] ≤ U(pEf [q]) = U(pq̄).
The last inequality results from the concavity of U and implies that the case 1 never brings a
better payoff to the contractor than truthful reporting.

Case 2 Actual production always fall in the insured range if q0 is chosen such that (1−w)q0 ≤
(1− δ)q̄ and (1 + w)q0 ≥ (1 + δ)q̄, i.e., for q0 ∈ [ 1+δ

1+w q̄,
1−δ
1−w q̄]. In this interval, the firm’s payoff is

Ef [U(pR(q, q0)] = U(pq0), which is then maximized for the highest value of q0 within this interval:
q0 = 1−δ

1−w q̄ ≥ q̄.
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Case 3 This case corresponds to reported expected productions such that the upper bound
of the insurance range is within the support of F : (1− δ)q̄ ≤ (1 +w)q0 < (1 + δ)q̄, or equivalently
q0 ∈ [ 1−δ

1+w q̄,
1+δ
1+w q̄[. The contractor’s expected payoff can then be expressed as

Π(p, q0) = Ef [U(pR(q, q0)] = F ((1 + w)q0) · U(p · q0) +

∫ (1+δ)q̄

(1+w)q0

U(p · q)dF (q).

Let us define the distribution F ∗ from the (atomless) CDF F , by replacing the smooth part on the
interval [(1−δ)q̄, (1+w)q0] by an atom at q0. Formally, F ∗(q) = 0 for q < q0, F ∗(q) = F ((1+w)q0)

for q ∈ [q0, (1 +w)q0] and F ∗(q) = F (q) for q ≥ (1 + x)q0. Equipped with this definition we have
Π(p, q0) = Ef∗ [U(p · q)] ≤ U(p ·Ef∗ [q]) where the latter inequality comes from the concavity of U .
Therefore if we show that U(p · Ef∗ [q]) ≤ U(pq̄) we would have shown that no q0 in this interval
brings a better expected payoff to the contractor than truthfully reporting q̄.

We then want to show for any q0 ∈ [ 1−δ
1+w q̄,

1+δ
1−w q̄] that Ef∗ [q] ≤ q̄, or equivalently that:

∫ (1+w)q0

(1−δ)q̄
qdF (q) ≥ F ((1 + w)q0) · q0. (15)

First note that for q0 ≤ (1 − δ)q̄,
∫ (1+w)q0

(1−δ)q̄ qdF (q) ≥
∫ (1+w)q0

(1−δ)q̄ q0dF (q) = F ((1 + w)q0) · q0. Now,
supposing q0 ≥ (1− δ)q̄ we can decompose the left-hand side in (15) as follows:∫ (1+w)q0

(1−δ)q̄
qdF (q) =

∫ q0

(1−δ)q̄
qdF (q) +

∫ 2q0−(1−δ)q̄

q0

qdF (q) +

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q) (16)

=

∫ q0−(1−δ)q̄

0
[(q0 − ε) · f(q0 − ε) + (q0 + ε) · f(q0 + ε)]dε+

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q).

(17)

Where the two first parts of the integral are merged through a change of variable, resp. ε = q0− q
and ε = q − q0. To characterize this first term in (17), consider ε ∈ [0, q0 − (1 − δ)q̄] and note
that from the symmetry of f around q̄ we have f(q0 − ε) = f(2q̄ − q0 + ε). Moreover, knowing
q0 <

1+δ
1+w q̄ < q̄ we obtain that q0 − ε < q0 + ε < 2q̄− q0 + ε and therefore since F is single-peaked

we know that f(q0 − ε) = f(2q̄ − q0 + ε) ≤ f(q0 + ε). Thus we obtain:

(q0 − ε) · f(q0 − ε) + (q0 + ε) · f(q0 + ε) = q0(f(q0 − ε) + f(q0 + ε)) + ε((f(q0 + ε)− f(q0 − ε))

≥ q0(f(q0 − ε) + f(q0 + ε)).
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Then, plugging this inequality into (17) we obtain:∫ (1+w)q0

(1−δ)q̄
qdF (q) ≥ q0

∫ q0−(1−δ)q̄

0
(f(q0 − ε) + f(q0 + ε))dε︸ ︷︷ ︸

=
∫ 2q0−(1−δ)q̄
(1−δ)q̄ f(q)dq

+

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q)︸ ︷︷ ︸

≥q0
∫ (1+w)q0
2q0−(1−δ)q̄ f(q)dq

≥ q0

∫ (1+w)q0

(1−δ)q̄
f(q)dq = F ((1 + w)q0) · q0

We have then establish the inequality (15), which implies (as detailed above) that no q0 ∈
[ 1−δ
1+w q̄,

1+δ
1−w q̄] brings a better payoff to the contractor than reporting truthfully q̄.

Case 4 This case corresponds to reported expected productions such that the lower bound of
the insurance range is within the support of F : (1− δ)q̄ < (1− w)q0 ≤ (1 + δ)q̄, or equivalently
q0 ∈] 1−δ

1−w q̄,
1+δ
1−w q̄]. We have already shown through the three previous cases that q0 = 1−δ

1−w q̄

brings a better payoff than any other q0 /∈ [ 1−δ
1−w q̄,

1+δ
1−w q̄], therefore the (globally) optimal report

of expected production necessarily lies within the present interval.
The contractor’s expected payoff on this interval and its derivative are expressed as:

Π(p, q0) =

∫ (1−w)q0

(1−δ)q̄
U(p · q)dF (q) + (1− F ((1− w)q0)) · U(p · q0)

And its derivative with respect to q0 is:

∂Π(p, q0)

∂q0
= (1− w) [U((1− w)pq0)− U(pq0)] f((1− w)q0) + (1− F ((1− w)q0))pU ′(pq0) (18)

= p · U ′(pq0)f((1− w)q0)

[
1− F ((1− w)q0)

f((1− w)q0)
− 1− w

p
· U(pq0)− U(p(1− w)q0)

U ′(pq0)

]
(19)

Note that since U ′(pq0)f((1 − w)q0) > 0, ∂Π(p,q0)
∂q0

has the same sign as the term in brackets
in (19), that we further denote M(q0). Then, any interior optimum within this interval q∗0 must
satisfy the FOC:

M(q∗0) ≡ 1− F ((1− w)q∗0)

f((1− w)q∗0)
− (1− w)

p
· U(pq∗0)− U(p(1− w)q∗0)

U ′(pq∗0)
= 0 (20)

Note that we know from the previous cases that if δ < w, then reporting the lower bound of the
interval (1−δ)

1−w q̄ brings a strictly better payoff to the contractor than the upper bound (the latter
raising the same payoff as a linear contract, i.e., Ef [U(pq)]). The latter is therefore ruled out as
a global optimum.
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Finally, if δ < w, any optimal reporting q∗0 ∈ Q∗0(p) satisfies either q∗0 = 1−δ
1−w q̄ or the first order

condition (20). The set Q∗0(p) can be further characterized when assuming:

• The distribution F is such that the function q 7→ 1−F (q)
f(q) is continuously decreasing.60

• The PDF f is continuous on R+, or to put it otherwise the distribution F is vanishing at
the bounds of its support: limq→(1−δ)q̄ f(q) = 0.

Let us first consider the case of a risk neutral contractor. In such a case, we use the notation
MRN (q0) for the function M(q0) = ∂Π(p,q0)

∂q0
. If U is linear, then U(pq0) − U(p(1 − w)q0) =

wpq0U
′(pq0) and we have consequently:

MRN (q0) =
1− F ((1− w)q0)

f((1− w)q0)
− (1− w)wq0.

From the first assumption above, MRN (q0) is decreasing in q0 for any w ∈]0, 1[, and therefore
MRN (q∗0) = 0 admits at most one solution. Moreover, since F is symmetric and single peaked we
have that f(q̄) ≥ 1

2δq̄ . Therefore:

MRN (
1

1− w
q̄) =

1− F (q̄)

f(q̄)
− wq̄ ≤ q̄(δ − w) < 0.

Then there is a unique global optimal which necessarily belongs to the interval ] 1−δ
1−w q̄,

1
1−w q̄[. This

optimum denoted next qRN0 is characterized as the solution of MRN (qRN0 ) = 0 and thus does not
depend on p.

In the general case, for any risk averse contractor with the concave utility function U , we
have U(pq0)− U(p(1− w)q0) ≥ wpq0U

′(pq0) and therefore that M(q0) ≤MRN (q0) for any q0. If
q0 > qRN0 , then M(q0) ≤ MRN (q) < 0 which implies that q∗0 /∈ Q∗0(p). Overall, for any concave
utility function U , any optimum q∗0 ∈ Q∗0(p) is below the optimum with a risk neutral contractor:
q∗0 < qRN0 . In other words, any risk averse strategic contractor always overestimate its production
less than a risk neutral strategic contractor.

In addition, note that the second assumption above (the continuity of f) implies that
limq0→ 1−δ

1−w q̄
1−F ((1−w)q0)
f((1−w)q0) = +∞ which further implies that:

lim
q0→ 1−δ

1−w q̄
M(q0) = +∞

60This assumption is stronger than most often needed, in order to cover any potential value taken by w: we
actually only need the function M(q0) defined in Eq. (20) to be continuously decreasing in q0 on the interval
] 1−δ
1−w q̄,

1+δ
1−w q̄[.
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and therefore that the derivative of the contractor’s payoff is positive (and infinite) at the lower
bound 1−δ

1−w q̄. The potential corner solution q∗0 = 1−δ
1−w q̄ is then ruled out and any global optimum

necessarily satisfies M(q∗0) = 0.

Last, we assume the contractor’s utility function is a CRRA utility function. The first order
condition (20) simplifies to:

MF (q∗0;w, γ) ≡ 1− F ((1− w)q∗0)

f((1− w)q∗0)
− (1− w)q∗0 ·K(w, γ) = 0 (21)

where K(w, γ) = 1−(1−w)1−γ

1−γ . Note that ∀γ 6= 1, K(0, γ) = 0 and ∂K(w,γ)
∂w = 1

(1−w)γ > 0, therefore

∀(w, γ) K(w, γ) ≥ 0. Moreover 1−F (q)
f(q) is strictly decreasing on ](1− δ)q̄, q̄[, then MF (·;w, γ) is

strictly decreasing as well. Then Eq. (21) admits a single solution on this interval. Overall, we
obtain that Q∗0(p) is a singleton and does not depend on p. Let q∗0 denote the global optimum.

We now are able to derive the following comparative statics on q∗0 from (21):

1. K(w, γ) is increasing in γ and then MF (q0;w, γ) is decreasing in γ for every q0. There-
fore, the optimal report q∗0 decreases with γ: the more risk averse firms are, the less they
overestimate their production.

2. Consider two distributions F1 and F2 (on the same support), with F1 less risky than F2

in the sense that ∀q ≤ q̄, f1(q)
1−F1(q) <

f2(q)
1−F2(q) . Then MF1(q0;w, γ) > MF2(q0;w, γ) for any

q0 ∈] 1−δ
1−w q̄,

1
1−w q̄[ (the interval where the optima are to be found), and consequently the

solution to MF1(q0;w, γ) = 0 is larger than the solution to MF2(q0;w, γ) = 0: if production
is less risky, then firms overestimate more their expected production.

3. Assuming γ ≥ 1, K(w, γ) is non-increasing in w, and therefore (1 − w)q0 · K(w, γ) is
strictly decreasing in w. In addition, since 1−F (q)

f(q) is decreasing on ](1− δ)q̄, q̄[, we also have
1−F ((1−w)q0)
f((1−w)q0) decreasing in w for q0 ∈] 1−δ

1−w q̄,
1

1−w q̄[. Then MF (q0;w, γ) is strictly decreasing
in w on the interval containing q∗0, and therefore the greater is w the greater is the solution
to (20): the larger the insurance range is, the more firms overestimate their production if
γ ≥ 1.
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Technical details for Section 5: The zero surplus condition when
firms are homogeneous

To simplify the arguments, below we consider implicitly symmetric equilibria and that ties are
resolved randomly with equal probabilities.61 Nevertheless, we do not exclude equilibria in mixed
strategies.

Let Sp ⊆ R+ denote the support of the price bid of a firm characterizing a (possibly mixed)
equilibrium, i.e., the set such that in equilibrium firms are indifferent between any bid p ∈ Sp.
Let p denote the upper bound of Sp, with p > 0. Suppose that there exists an equilibrium where
firms’ expected payoff π∗, raised by any bid p ∈ Sp, is strictly greater than U(C). Let P (b) denote
the probability to win with the price bid p.

Assume the firm’s payoff (conditional on winning) is continuous in p. Then the equilibrium
strategy could not have any atom: slightly undercutting such an atom would incur a discrete
positive change in the probability of winning but a negligible change in the firm’s payoff conditional
on winning (and such that it remains strictly superior to U(C)), and therefore lead to a strict
increase in the firm’s expected payoff. In the absence of any atom in the equilibrium strategy,
p 7→ P (p) is continuous and we cannot have P (p) = 0, because otherwise the expected payoff
raised by some equilibrium bid in the neighborhood of p would be strictly lower than π∗ (it would
converge to zero as p tends to p) which would raise a contradiction. So we must have P (p) > 0,
which is possible only if opponents bid p with a strictly positive probability. Thus we have an
atom at p which raises a contradiction as argued above.

On the whole, we have shown that bidders’ expected payoff cannot be strictly superior to
and then should be equal to U(C) (the payoff when losing the auction) in equilibrium with
homogeneous bidders. Furthermore, we show below that there is a single price bid that is consistent
with zero surplus, both under the “all truthful” and the “all strategic” paradigms. In other words,
the set Sp is a singleton.

All truthful paradigm On the one hand, the function U is (strictly) increasing and concave
and so we have U ′(x) > 0 for any x. On the other hand q 7→ R(q, q̄) is continuously non-
decreasing with R(q̄, q̄) = q̄ > 0 so that R(q, q̄) > 0 on a positive measure of the support of f .
Therefore the function p 7→ Ef [U(p · R(q, q̄))] is strictly increasing. Furthermore, the function
p 7→ Ef [U(p · R(q, q̄))] is continuous and is equal to U(0) for p = 0 and goes to infinity when p
goes to infinity. The zero surplus condition Ef [U(p · R(q, q̄))] = U(C) has thus a solution which
is unique.

All strategic paradigm Let us show below that the function H : R+ 7→ R+ defined by H(p) :=

61The zero surplus condition extends to asymmetric ones. In particular, there exists asymmetric equilibria where
two firms bid competitively while other firms submit non-competitive offers.

60



maxq0≥0 Ef [U(p · R(q, q0))] is strictly increasing on R+. This function is well-defined since we
have assumed that the sets Q∗0(p) are non-empty for any p > 0. As in the previous case with
truthful bidders, the function q 7→ R(q, q̄) is strictly positive on a positive measure of the support
of f . This property hold then for the function q 7→ R(q, q∗0(p)) where q∗0(p) ∈ Q∗0(p) (because if
R(q, q∗0(p)) = 0 almost everywhere on the support of f , then the firm would raise its expected
payoff by reporting q̄ instead of q∗0(p) which would raise a contradiction). Take p′ > p > 0. We
have then Ef [U(p′ ·R(q, q∗0(p)))] > Ef [U(p ·R(q, q∗0(p)))]. Then from the optimality of q∗0(p′) when
the price bid is p′, we have Ef [U(p′ ·R(q, q∗0(p′)))] ≥ Ef [U(p′ ·R(q, q∗0(p)))]. We have thus shown
that H is (strictly) increasing on R+.

Furthermore, H is continuous (since it is a maximum of continuous functions) and is equal
to U(0) for p = 0 and goes to infinity when p goes to infinity.62 The zero surplus condition
H(p) = U(C) has thus a solution which is unique.

Properties with CRRA utility functions

For a given payment rule R(., .) and a given utility function U , let us use the notation Q∗f (p) :=

Argmaxq0≥0 Ef [U(p ·R(q, q0))]. For a set S ⊆ R and λ ∈ R, we let λ × S := {x ∈ R|∃s ∈
S such that λ · s = x}.

For a given production distribution f (with the corresponding CDF F ) and λ > 0, we let denote
fλ(.) the PDF (with the corresponding CDF Fλ) such that fλ(q) = λ · f(λ · q) (or equivalently
Fλ(q) = F (λ ·q)) for any q ∈ R+. The distribution fλ corresponds to a homothetic transformation
of the distribution f . The mean of fλ is then equal to q̄

λ .
LetBECTf , BEC

S
f andBECS−Tf denote the BEC in the paradigms where all firms are truthful,

all firms are strategic and a single firm is strategic while the other firms are truthful, respectively.
We have that BECTf = pT · Ef [R(q, q̄)]. When all firms are strategic (resp. one firm is strategic
while the others are truthful), the BEC in equilibrium depends implicitly on how the optimal
report is selected in the set Q∗f (pS) (resp. Q∗f (pT )). Next we let qS(f) ∈ Q∗f (pS) (resp. qN−S(f) ∈
Q∗f (pT )) the corresponding selection such that BECSf = pS · Ef [R(q, qS)] (resp. BECS−Tf =

pT · Ef [R(q, qS−T )]).

Lemma 9. Suppose that the utility function U is a CRRA utility function and consider a produc-
tion distribution f on R+.

1. Then the set Q∗f (p) does not depend on p for any p > 0 and there is thus a selection rule

such that neither qS(f), qS−T (f), p
T

C , p
S

C nor the performance ratios
BECkf
C , k = T, S, S−T ,

depend on C.
62We have that Ef [U(p · R(q, q̄))] goes to infinity when p goes to infinity, while the optimality of q∗0(p) implies

that H(p) ≥ Ef [U(p ·R(q, q̄))] for any p.
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2. If the payment rule R is homogeneous of degree 1, then Q∗fλ(p) = 1
λ ×Q

∗
f (p) for any p, λ > 0

and there is thus a selection rule such that neither λ · qS(fλ), qS−T (fλ), pT

λ , pS

λ nor the

performance ratios
BECkf
C , k = T, S, S − T , depend on λ.

Lemma 9 involves various ratios between the BEC and the producer’s cost. Lemma 9 says
that those (performance) ratios depend neither on C nor on λ under various bidding paradigms:
This non-dependence holds when all firms are truthful, when all firms are strategic and also if
a single firm is strategic while its competitors are truthful. In particular, in the two first cases
where firms are homogeneous, it means that risk premiums does not depend on C and λ. In the
third case, the ratio capture both a risk premium and a non-competitive rent.

Proof of Lemma 9
If U is a CRRA utility function, then U(p · R(q, q0)) = p1−γ · U(R(q, q0)). For any p > 0, we

have then Q∗f (p) = Q∗f (1).
Let us now consider the ratios between the cost for the buyer and the cost for the firm under

our various bidding paradigms. With a CRRA utility function, (2) and (3) can be rewritten
respectively as

(
pT

C
)1−γ · Ef [U(R(q, q̄))] = 1

and

(
pS

C
)1−γ · Ef [U(R(q, qS(f)))] = 1

with qS(f) ∈ Q∗f (pS) = Q∗f (1) where the set Q∗f (1) does not depend on C. Next we pick a selection
rule such that qS(f) does not depend on C.

We obtain that the ratios pT

C and pS

C do not depend on C and finally that the ratios
BECkf
C ,

k = T, S, S − T do not depend on C. We have show part 1.
Consider now that R is homogeneous of degree 1. We have then Efλ [U(p ·R(q, q0))] =

∫∞
0 U(p ·

R(q, q0))fλ(q)dq =
∫∞

0 U(p · R(q, q0))f(λq)d(λq) =
∫∞

0 U(p · R( qλ , q0))f(q)dq = Ef [U(p · R( qλ , λ ·
q0
λ ))] = 1

λ1−γ · Ef [U(p · R(q, λq0))] where the last equality uses the homogeneity of degree 1
assumption and that U is a CRRA utility function. Since Efλ [U(p · R(q, q0))] = 1

λ1−γ · Ef [U(p ·
R(q, λ · q0))], we then obtain Q∗f (p) = λ×Q∗fλ(p).

Let us show that the equilibrium prices pT and pS are linear in λ. Below we explicit in our
notation the dependence in λ and in particular use the notation q̄λ (for the mean of fλ) and pTλ and
pSλ (for the equilibrium prices for fλ). According to our notation, we have thus q̄λ = q̄

λ , p
T = pT1

and pS = pS1 . Since Q∗f (p) = λ×Q∗fλ(p) (for any λ > 0), for any given p > 0 and given f , we can

pick a selection q∗λ(p) in the sets Q∗fλ(p) such that q∗λ(p) =
q∗λ(p)
λ . Next we have qS(fλ) = q∗λ(pSλ)
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and qS(fλ) = q∗λ(pSλ).
If we apply (2) for both f and fλ, we obtain that for any λ:

Ef [U(pT ·R(q, q̄))] = U(C) = Efλ [U(pTλ ·R(q, q̄λ))] = Ef [U(pTλ ·R(
q

λ
,
q̄

λ
))] = Ef [U(

pTλ
λ
·R(q, q̄))].

The equality Ef [U(pT ·R(q, q̄))] = Ef [U(
pTλ
λ ·R(q, q̄))] implies then that pTλ = λ · pT .

Similarly, if we apply (3) for both f and fλ, we obtain that for any λ:

U(C) = Efλ [U(pSλ ·R(q, q∗0,λ(pSλ)))] = Ef [U(pSλ ·R(
q

λ
,
q∗0(pSλ)

λ
))] = Ef [U(

pSλ
λ
·R(q, q∗0(pSλ)))]

and
U(C) = Ef [U(pS ·R(q, q∗0(pS)))] = Ef [U(pS ·R(q, q∗0(pSλ)))]

where the last equality comes from the fact that q∗0(pS) = q∗0(pSλ) because the optimal report
q∗0(p) does not depend on p. Finally, this implies that pSλ = λ · pS .

We conclude the proof by noting that the buyer’s expected cost can be written expressed in
the following way in the three bidding paradigms:

• pTλ · Efλ [R(q, q̄λ)] = pTλ · Ef [R( qλ ,
q̄
λ)] = pT · Ef [R(q, q̄)] if all firms are truthful,

• pSλ ·Efλ [R(q, q∗0,λ(pSλ))] = pSλ ·Ef [R( qλ ,
q∗0(pSλ)
λ )] = pS ·Ef [R(q, q∗0(pSλ))] = pS ·Ef [R(q, q∗0(pS))]

(the last equality results from the fact that q∗0(p) is independent of p), if all firms are strategic,

• pTλ ·Efλ [R(q, q∗0,λ(pTλ ))] = pTλ ·Ef [R( qλ ,
q∗0(pTλ )
λ )] = pT ·Ef [R(q, q∗0(pTλ ))] = pT ·Ef [R(q, q∗0(pT ))]

(the last equality results from the fact that q∗0(p) is independent of p), if a single firm is
strategic while the other firms are truthful.

Q.E.D.

Remark: Under the multi-year contracts used in France and in presence of operating costs,
we could extend Lemma 9.

Formally, let us denote the producer’s total (discounted) cost over the life time of the plant
by TC := IC +

∑20
t=1

OC
(1+r)t . Let us generalize the definition of BECkf , for the bidding paradigm

k = NS, S, S−T , to our multi-period setup. BECkf corresponds then to the expected (discounted)
total subsidy paid by the buyer to the contractor in the paradigm k. We have e.g. that BECTf =∑20

t=1

pT ·Efλ [R(q,q̄)]

(1+r)t .

Lemma 9 extends to this framework in the following way:
If the utility function U is a CRRA utility function, then the set of optimal reports q∗0(p)

remains the same if we simultaneous multiply the price bid p and the operation cost OC by the
same constant.
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Then the ratios
BECkf
TC , for k = S,NS, S − T remain the same if we multiply both the in-

vestment cost and the operation costs by the same constant.63 Note that if the investment and
operation costs are multiplied by different constants, then there would be a wealth effect that
would complicate the analysis.

Last, if we also assume that the payment rule R(., .) is homogeneous of degree 1, then the

ratios
BECkf
TC , for k = S,NS, S − T remain the same after a homothetic transformation of the

distribution f , i.e., does not depend on λ.

Example 1

Let us build a production-insuring rule R(., .) and a distribution f such that the cost to the buyer
under truthful reporting is greater than under strategic reporting.

Take ε ∈ (0, 1). For each q0 > 0, let us define the function R(., q0) : R+ → R+ recursively in
the following way: for q ∈ [5

6q0,
7
6q0], we let R(q, q0) := q0 + (1 − ε) · (q − q0) so that payment

is almost equivalent to the linear contract for ε small, but with a slightly smaller slope; for
q ∈ [(1

2 +ε)q0,
5
6q0[ we let R(q, q0) := R(5

6q0, q0), for q ∈]7
6q0, (

3
2−ε)q0] we let R(q, q0) := R(7

6q0, q0)

so that payment is flat in these two intervals; for q ∈ [0, 1
2q0[ and for q ≥ 3

2q0 we let R(q, q0) := q,
then the payment is equivalent to the linear contract on these intervals; finally we define R(., .)

in [1
2q0, (

1
2 + ε)q0[ and in [(3

2 − ε)q0,
3
2q0[ so that payment is continuous in q: on the first segment

R(q, q0) := q( 1
3ε + 1

6) + q0( 5
12 −

1
6ε), and on the second segment R(q, q0) := q( 1

3ε + 1
6) + q0(5

4 −
1
2ε).

For the distribution f , take the uniform distribution on [1−δ, 1+δ] where δ < 1
6 . Under truthful

reporting, we have that the equilibrium price pT is characterized by
∫ 1+δ

1−δ U(pT · (1− ε)q) = U(C).
Under strategic reporting, we have that the firm overestimates its production by reporting q∗ > q̄

in order to benefit from the payment being largely inflated in lower flat areas.
Through simulations with δ = 1/6, a CRRA utility function with γ = 1 and ε = 0.01, we find

the optimal reporting of q0 being 1.6605. For such reporting, the lower bound of the distribution
(relative to the average realization q̄), 1− δ, is slightly below 1/2 (0.044), while the upper bound
is slightly below 5/6 (0.77). Then most of the support of the distribution stands on the flat part
of the payment rule, which results in a smaller risk premium. With the firm’s cost being 1, the
buyer’s expected cost drops from 1.0045 when firms are truthful to 1.0009 when firms are strategic.

63If this constant is equal to α > 0, then there exists an equilibrium (in the three paradigms we consider) where
the corresponding equilibrium price is multiplied by α and the optimal report remains unchanged.
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Model with moral hazard

We know from Proposition 2 that q0 < q̄ implies that Efq̄ [R(q, q0)] ≤ q̄ if R(., .) is production-
insuring. For any p > 0, if the buyer sets a reference production q0 ≥ [C ′]−1(p) (or equivalently
p ≤ C ′(q0) since C is convex), i.e. the optimal level of effort for the contractor under the linear
contract, then for any q̄ > q0, we have

p ·
(
Efq̄ [R(q, q0)]− q0

)
≤ p(q̄ − q0) ≤ C ′(q0)(q̄ − q0) < C(q̄)− C(q0) (22)

where the last inequality comes the strict convexity of C.
For any price p and any reference production q0, let Π(p, q0, q̄) ≡ Efq̄ [p ·R(q, q0)]−C(q̄) denote

the contractor’s expected payoff as a function of its effort q̄. Note that Π(p, q0, q0) = pq0 −C(q0)

(given the definition of a production-insuring payment rule). From (22), we obtain then that

Π(p, q0, q̄) < Π(p, q0, q0) (23)

if q̄ > q0 ≥ [C ′]−1(p). We have thus shown that the contractor’s optimal level of effort can not
be larger than q0, when the latter is set greater or equal to the optimal level of effort under the
linear contract.

Remark: Under additional restrictions (presented below), we show that ∂Π(p,q0,q̄)
∂q̄ |q̄=q0 < 0

guaranteeing that the contractor’s optimal level of effort is actually strictly smaller than under
the linear contract.

Since C is convex, then for any price p < p̄, the optimal level of effort under the linear contract
[C ′]−1(p) is lower than the socially optimal level of effort q̄∗ = [C ′]−1(p̄). Finally we obtain that
for any p < p̄, if the production of reference is set strictly above [C ′]−1(p), then the contractor will
provide a lower level of effort. In particular the level of effort [C ′]−1(p̄) can not be implemented
this way if p < p̄.

Strict incentives to shirk with production-insuring payment rules:
Under additional restrictions (presented below), this impossibility result is extended to the

case where p = p̄.
Consider a production-insuring payment rule R(., q0) where q0 is set by the buyer. Once q0

is fixed, we can assume without loss of generality that R(., .) is homogeneous of degree 1, which
implies that for any λ > 0,

dEfq̄ [R(λq,λq0)]

dλ = Efq̄ [R(q, q0)], or equivalently

Efq̄
[
q · ∂R

∂q
(λq, λq0)

]
+ q0 · Efq̄

[
∂R

∂q0
(λq, λq0)

]
= Efq̄ [R(q, q0)]. (24)

From the homogenous of degree 1 property, we can also write R(q, q0) = q · z( qq0 ). Below we
assume implicitly that all the derivatives we use are well-defined. Let us assume a change in q̄ is
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associated with a homothetic transformation of the distribution: Fq̄(q) = F1( qq̄ ) for any q ∈ R+

which implies that q̄fq̄(q) = f1( qq̄ ). After the change of variable ε = q
q̄ , we have then

Efq̄
[
∂R

∂q0
(q, q̄)

]
= −

∫ 2

0
ε2 · z′(ε)f1(ε)dε.

Note that the latter expression does not depend on q̄. Proposition 2 implies here that
Efq̄

[
∂R
∂q0

(q, q̄)
]
≥ 0. In our case, it corresponds thus to

−
∫ 2

0
ε2 · z′(ε)f1(ε)dε ≥ 0 (25)

Let us assume that the inequality is strict.
From the structure regarding the distributions Fq̄, we have then: Efq̄ [R(q, q0)] =∫

R(q, q0)fq̄(q)dq =
∫
R(q · q̄, q0)fq̄(q · q̄)d[q · q̄] =

∫
R(q · q̄, q0)f1(q)dq = Ef1 [R(q̄ · q, q0)]. This

further implies that
dEfq̄ [R(q,q0)]

dq̄ =
dEf1 [R(q̄·q,q0)]

dq̄ = Ef1 [q · ∂R∂q (q · q̄, q0)], which when multiplied by

q̄ gives q̄
dEfq̄ [R(q,q0)]

dq̄ = Ef1 [q̄ · q · ∂R∂q (q · q̄, q0)] = Efq̄ [q · ∂R∂q (q, q0)]. Applying λ = 1 in (24) and
replacing the first term thanks to the previous equality, we get the general result in (26).

q̄ ·
dEfq̄ [R(q, q0)]

dq̄
+ q0 · Efq̄

[
∂R

∂q0
(q, q0)

]
= Efq̄ [R(q, q0)] (26)

We then can derive that for any q0 set by the buyer, for a level of effort q̄ = q0 we get from
(26) that:

dEfq̄ [R(q, q0)]

dq̄
|q̄=q0 = 1− Efq̄

[
∂R

∂q0
(q, q̄)

]
< 1 (27)

where the strict inequality comes from the strict version of (25). Therefore for any price p, we get
the following inequality on the derivative of its payoff Π(p, q0, q̄) ≡ Efq̄ [pR(q, q0)] − C(q̄) at the
reference production q0:

dΠ(p, q0, q̄)

dq̄
|q̄=q0 = p

dEfq̄ [R(q, q0)]

dq̄
− C ′(q0) < p− C ′(q0). (28)

For all q0 ≥ [C ′]−1(p), which includes q0 = q̄∗ as long as p ≤ p̄, we know that the last term in
(28) is negative and thus we have shown that the contractor has a strict incentive to shirk. This
precludes in particular the buyer from setting a payment rule that both is production insuring
and incentivize to provide the socially optimal level of effort, unless the buyer accepts to pay a
price p higher than its value p̄.
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More detailed results on the performance of the French rule.

For 5 wind farm sites and 5 level of relative risk aversion (including risk neutrality), Table 2
reports the performance ratio

p ·
∑20

t=1
E[R(qt,q0)]

(1+r)t

IC +
∑20

t=1
OC

(1+r)t

(29)

for different equilibrium values for the bid pair (p, q0) of the winning bidder: first we consider the
equilibrium under the linear FiT, second we consider the equilibrium under the French payment
rule according to our three bidding paradigms of interest. The performance ratio is necessary
above (or equal to) one: otherwise the winning bidder would have preferred to lose the auction
which would raise a contradiction with the pair (p, q0) being an equilibrium bid. Under the linear
FiT or if bidders are homogeneous (either all truthful or all strategic), then our performance ratio
minus one corresponds to the risk premium that the buyer have to concede to firms to insure them
against production risk (and which vanishes if γ = 0).

Table 3 does the same exercise when the equilibrium bid pairs (p, q0) in (29) are computed
with the utility function U(x) = [x−IC+w]1−γ

1−γ with the initial wealth w being equal to the total
net present cost IC +

∑20
t=1

OC
(1+r)t (instead of taking implicitly w = IC in Table 2). Given Table

1, the initial wealth used for the computations in Table 3 are then about twice larger than in our
main specification: this makes firms less risk averse in absolute terms and thus reduce the risk
premium. This is consistent with what we obtain in the columns 3 to 5. E.g., under the linear FiT
and for γ = 1, the risk premiums are about 50% larger in Table 2 than in Table 3. However, if a
bidder is less risk averse (as it is the case with a larger initial wealth), then he/she is more prone
to bias his/her report (i.e., here to overestimate even more the expected production): due the
corresponding effect on the noncompetitive rents, the performance ratio may be worse in Table 3
than in the corresponding estimates in Table 2 for some specification (it is actually the case for
large values of γ, e.g. for γ = 10 in Fécamp). Overall, due to these two opposite effects in the case
with a single strategic producer, we obtain that the performance ratios are very close in column
6 of Table 2 and 3.
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Table 2: Performance ratio with U(x) = x1−γ

1−γ .

Site γ Linear FiT The French payment rule
All truthful All strategic a single strategic bidder

Courseulles 0 1.000 1.000 1.000 1.035
1 1.003 1.001 1.004 1.036
3 1.009 1.003 1.010 1.038
5 1.016 1.006 1.016 1.038

10 1.033 1.014 1.028 1.038
Fécamp 0 1.000 1.000 1.000 1.036

1 1.003 1.001 1.003 1.037
3 1.009 1.003 1.010 1.038
5 1.015 1.006 1.016 1.039

10 1.032 1.013 1.028 1.039
Le Tréport 0 1.000 1.000 1.000 1.033

1 1.003 1.001 1.004 1.034
3 1.010 1.004 1.011 1.036
5 1.017 1.008 1.018 1.038

10 1.037 1.019 1.033 1.040
Saint-Nazaire 0 1.000 1.000 1.000 1.036

1 1.003 1.001 1.004 1.037
3 1.009 1.003 1.010 1.038
5 1.016 1.006 1.016 1.039

10 1.033 1.014 1.028 1.039
Noirmoutier 0 1.000 1.000 1.000 1.035

1 1.004 1.001 1.004 1.036
3 1.011 1.004 1.012 1.038
5 1.019 1.007 1.019 1.039

10 1.039 1.019 1.032 1.038
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Table 3: Performance ratio with U(x) = [x−IC+w]1−γ

1−γ with the initial wealth w being equal to the
total net present cost of the project.

Site γ Linear FiT The French payment rule
All truthful All strategic a single strategic bidder

Courseulles 0 1.00000 1.00000 1.00000 1.03501
1 1.00202 1.00072 1.00237 1.03571
3 1.00612 1.00218 1.00693 1.03688
5 1.01030 1.00372 1.01117 1.03770

10 1.02115 1.00807 1.02032 1.03844
Fécamp 0 1.00000 1.00000 1.00000 1.03560

1 1.00197 1.00069 1.00227 1.03627
3 1.00598 1.00209 1.00664 1.03737
5 1.01006 1.00356 1.01080 1.03822

10 1.02065 1.00771 1.02002 1.03906
Le Tréport 0 1.00000 1.00000 1.00000 1.03251

1 1.00207 1.00085 1.00231 1.03335
3 1.00625 1.00259 1.00677 1.03483
5 1.01052 1.00439 1.01099 1.03602

10 1.02163 1.00943 1.02082 1.03819
Saint-Nazaire 0 1.00000 1.00000 1.00000 1.03563

1 1.00226 1.00082 1.00266 1.03643
3 1.00686 1.00250 1.00777 1.03773
5 1.01159 1.00426 1.01248 1.03860

10 1.02390 1.00930 1.02262 1.03920
Noirmoutier 0 1.00000 1.00000 1.00000 1.03456

1 1.00212 1.00079 1.00244 1.03533
3 1.00641 1.00238 1.00706 1.03658
5 1.01077 1.00404 1.01146 1.03758

10 1.02203 1.00864 1.02086 1.03846
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