Robust Risk Sharing Contracts with Costly Signaling

Laurent Lamy & Clément Leblanc

Ecole National des Ponts et Chaussées – CIRED (Paris) Universidad Carlos III de Madrid – EnergyEcoLab (Madrid)

June 2nd, 2025

Motivation

Delegating a **risky project** where only the **outcome is contractable**, a **risk-neutral principal** faces a trade-off between:

- Incentivizing the agent to take actions that induce the most favorable outcome
 → Moral Hazard
- Taking the risk for herself to reduce the risk premium of the possibly risk-averse agent \rightarrow **Risk Sharing**

Holmström (1979)

Canonical framework for the agency under moral hazard problem

- The principal offers a contract w depending on the agent's ex-post performance q
- $oldsymbol{\circ}$ The agent chooses a **costly action** a that affects the distribution of q

Principal's problem:

$$\max_{w(\cdot)} \int (q-w(q))dF(q\mid a^*)$$
 s.t.
$$a^* \in \operatorname*{Arg\,max} \int U(w(q))dF(q\mid a) - C(a) \quad \text{(IC)}$$

$$\int U(w(q))dF(q\mid a^*) - C(a^*) \geq 0 \quad \text{(IR)}$$

Limits of the existing literature

Existing literature relies on

- Structure on the space of actions
 - ullet e.g., one dimensional with $a\in\mathbb{R}$
- Common knowledge assumptions
 - about **the distribution** $F(\cdot \mid a)$
 - about the agent's risk-preferences U

Predicts sophisticated contracts not observed in practice

This paper – Robust Approach

- No parametric restrictions
 - Large set of potential actions and risk distributions associated (all distributions on \mathbb{R}_+)
 - Large set of potential risk preferences (all increasing concave functions)
- No prior on the characteristics of the agent

(no distribution of "types")

- <u>Criterion</u> = No-regret (Pareto-improvement) compared to a marginal reward (MR) contract (→ optimal under a risk-neutrality)
- Better contracts are allowed by some costly signaling by the agent

Related Literature

- Contract Design Laffont, Martimort (2002), Armstrong, Sappington (2007), Georgiadis (2022)
 - Under Risk-Neutrality Rogerson (1992, RES), Hatfield, Kojima, Kominers (2015, wp)
 - Under Risk-Aversion Weitzman (1980, QJE), Mirlees (1999, RES), McAfee, MacMillan (1986, RAND), Holmstrom, Milgrom (1987, Ecma), Engel, Fischer, Galetovic (2001, JPE)
- Robust Contract Design Bergemann, Schlag (2008, JEEA), Chassang (2013, Ecma), Carroll (2015, AER), Walton, Carroll (2019, wp)
- Lying/Misreporting Costs Lacker, Weinberg (1989, JPE); Maggi, Rodriguez-Clare (1995, RAND); Kartik (2009, RES); Martimort, Poudou, Sand-Zantmann (2010, JIE)

Model

Model

A **risk-neutral principal** delegates a risky project to an **agent** through a contract w, where the payment w(q, s) depends on:

- A **production** $q \in \mathbb{R}_+$ realized ex-post following a distribution F chosen ex-ante by the agent
- ullet A **signal** $s\in\mathbb{R}_+^*$ sent ex-ante by the agent, said **truthful** if

$$s = \sigma(F) \equiv q_F := \mathbb{E}_F[q]$$

(σ denotes the expected value function)

The agent I

The agent is characterized by

- Any set of potential actions $\mathcal{A} \subseteq \mathcal{F} \times \mathbb{R}_+^*$
 - including a **project** $F \in \mathcal{F} \equiv$ the set of **all probability distributions** on a compact subset of \mathbb{R}_+ (excluding the Dirac in zero)
 - and a signal $s \in \sigma(\mathcal{F}) = \mathbb{R}_+^*$
 - a truthful signal is always available: $\forall (F,s) \in \mathcal{A}, (F,\sigma(F)) \in \mathcal{A}$
- Any cost function $C: A \to \mathbb{R}_+$
 - such that sending a truthful signal is always a least costly option: $\forall (F,s) \in \mathcal{A}, C(F,s) \geq C(F,\sigma(F))$
 - where the cost of misreporting admits a lower bound μ (next slide)
- Any utility function $U: \mathbb{R} \to \mathbb{R}$
 - ullet $U\in ar{\mathcal{U}}\equiv$ the set of all increasing and weakly concave utility functions

The agent II

 $\mu:(\mathbb{R}_+^*)^2 \to \mathbb{R}_+$ denotes a **minimum lying cost** function

- $\mu(s, \tilde{q})$ is a lower bound on the additional cost $C(F, s) C(F, \tilde{q})$ for the agent to **report** s **instead of** \tilde{q} , where \tilde{q} is the truthful signal
- $ullet \ orall s \in \mathbb{R}_+^*, \mu(s,s) = 0$
- ullet $\forall s, ilde{q} \in \mathbb{R}_+^*, \mu(s, ilde{q}) \geq 0$

 μ defines the agent's **potential cost functions** $C \in \mathcal{C}(\mu)$ where

$$\mathcal{C}(\mu) \equiv \{C: \mathcal{F} \times \mathbb{R}_+^* \to \mathbb{R}_+ \mid \forall (F, s), C(F, s) - C(F, \sigma(F)) \geq \mu(s, \sigma(F))\}$$

 Ω denotes the **set of potential agents** $(A, C, U) \in \Omega$

Timing of the game

The principal and the agent **agree on a contract** $w : \mathbb{R}_+ \times \mathbb{R}_+^* \to \mathbb{R}$, before the following steps:

- The agent learns his characteristics $(A, C, U) \in \Omega$ and decides whether to opt out with payoff zero
- ② The agent chooses an action $(F^*, s^*) \in \mathcal{A}$ at cost $C(F^*, s^*)$ with

$$(F^*, s^*) \in \operatorname{Arg\,max} \mathbb{E}_F[U(w(q, s) - C(F, s))]$$

3 The **production** q **is drawn** from distribution F^* and the principal pays $w(q, s^*)$ to the agent

Risk-neutrality and Marginal Rewards Contracts (Reminder)

• A contract w_0 is said to provide marginal reward (MR contract) if

$$\forall q \in \mathbb{R}_+, w_0(q) = q + w_0(0)$$

- When the agent is known to be risk-neutral, a contract is Pareto-optimal for any characteristics of the agent iff it provides marginal reward
- When the agent can be risk-averse, no contract is Pareto-optimal for any characteristics of the agent
- \Rightarrow We take a <u>MR contract as benchmark</u> that we want to improve upon

Criterion = Robust Pareto-dominance

Definition: Robust Pareto-dominance

• $w \succ_{\Omega} w'$: A contract w strictly robustly Pareto-dominates another contract w' over a set of potential agents Ω if $w \succeq_{\Omega} w'$ and the Pareto-dominance is strict for some agent $(\mathcal{A}, \mathcal{C}, \mathcal{U}) \in \Omega$

Impossibility Results:

- A simple contract w(q) (that does not depend on the signal) cannot strictly robustly Pareto-dominates a MR contract
- If the agent might be able of **cheap talk** $(\forall s, \tilde{q}, \mu(s, \tilde{q}) = 0)$, no contract strictly robustly Pareto-dominates a MR contract

Characterizing robustly Pareto-dominant contracts

Characterizing robustly Pareto-dominant contracts

Outline

- **1** Example 1: $\mu(s, q_F) = \alpha |s q_F|$ with $\alpha \in \mathbb{R}_+$
- **2** Example 2: $\mu(s, q_F) = c \cdot \mathbf{1}\{s \neq q_F\}$ with $c \in \mathbb{R}_+$
- **3** General characterization for any $\mu: (\mathbb{R}_+^*)^2 \to \mathbb{R}_+$

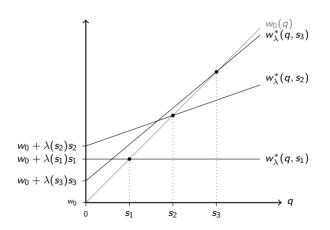
Necessary Condition: Linear contracts

For any $w \succeq_{\Omega} w_0$, w_0 a marginal reward contract, then w is such that $\forall q \in \mathbb{R}_+, s \in \mathbb{R}_+^*$

$$w(q,s) = \lambda(s)s + (1-\lambda(s))q + w_0$$
 with $\lambda(s) \in [0,1]$

- Only form that **preserves the expected payment** $w_0(q_F)$ for any distribution $F \in \mathcal{F}$, provided that the signal is truthful $(s = \sigma(F))$
- $\lambda(s)$ is a share of the risk that is transferred to the principal

Necessary Condition: Linear contracts



Necessary Condition: Deter overstatement

• Expected payment by the principal to the agent:

$$\mathbb{E}_F[w(q,s)] = w_0 + q_F + \lambda(s)(s - q_F)$$

 \Rightarrow If the agent overstates in equilibrium, switching from w_0 to w is **detrimental to the principal**

$$s > q_F \Rightarrow \mathbb{E}_F[w(q,s)] > w_0 + q_F > \mathbb{E}_F[w_0(q)]$$

 \Rightarrow w must deter any agent from overstating his expected production

Example 1: $\mu(s, q_F) = \alpha |s - q_F|$ with $\alpha \in \mathbb{R}_+$

Restrict attention to contracts $w_{\lambda}(q,s) = \lambda \cdot s + (1-\lambda) \cdot q + w_0$

When deciding whether to overstate $s > q_F$, the agent compares

- His benefit from misreporting: $w_{\lambda}(q,s) w_{\lambda}(q,q_F) = \lambda(s-q_F)$
- His cost of misreporting: $C(F, s) C(F, q_F) \ge \alpha(s q_F)$
- \Rightarrow Any contract w_{λ} with $\lambda \in]0, \alpha]$
 - \bullet Avoids any overstatement by the agent \to Makes the principal weakly better-off
 - Lower the risk for the agent with the same expected payment →
 Makes a risk-averse agent strictly better off

Example 1: $\mu(s, q_F) = \alpha |s - q_F|$ with $\alpha \in \mathbb{R}_+$

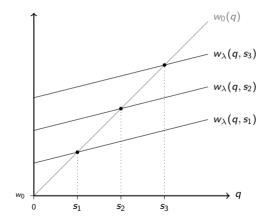


Figure: Example – Contract w_{λ} for $\lambda = 0.75$

Example 2: $\mu(s, q_F) = c \cdot \mathbf{1}\{s \neq q_F\}$ with $c \in \mathbb{R}_+$

If we keep the restriction to contracts with a fixed λ

• No agent decides to overstate $s > q_F$ iff

$$w_{\lambda}(q,s)-w_{\lambda}(q,q_F)=\boxed{\lambda(s-q_F)\leq c}\leq C(F,s)-C(F,q_F)$$

• Worst (limit) case: $q_F = 0$ and $s \to +\infty$

$$\lambda \leq \frac{c}{s - q_F} \leq \frac{c}{s} \xrightarrow{s \to \infty} 0$$

But we can relax the fixed λ restriction and have a variable $\lambda(s)$

$$w(q,s) = \lambda(s)s + (1 - \lambda(s))q + w_0$$
 with $\lambda(s) = c/s$

Example 2: $\mu(s, q_F) = c \cdot \mathbf{1}\{s \neq q_F\}$ with $c \in \mathbb{R}_+$

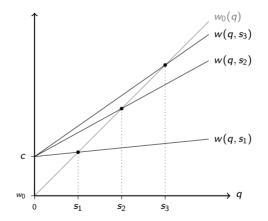


Figure: Example – Contract w with $\lambda(s) = c/s$

General Characterization of RPD contracts

For w_0 a MR contract, $w \succeq_{\Omega} w_0$ if and only if

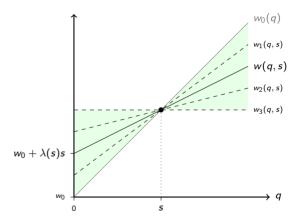
$$orall q \in \mathbb{R}_+, s \in \mathbb{R}_+^*, \quad w(q,s) = \lambda(s) \cdot s + (1-\lambda(s)) \cdot q + w_0$$

with

- \land $\forall s \in \mathbb{R}_+^*, \ \lambda(s) \in [0,1];$

General Characterization – Condition A

 $orall s \in \mathbb{R}_+^*$, $\lambda(s) \in [0,1]$



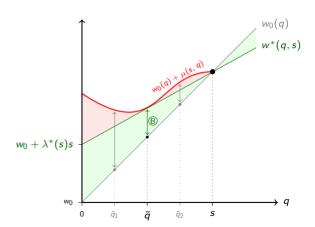
General Characterization - Condition B

 $orall ilde{q}, s \in \mathbb{R}_+^* ext{ with } s > ilde{q},$

$$w(\tilde{q},s)-w_0(\tilde{q}) \leq \mu(s,\tilde{q})$$

i.e..

$$\forall s, \lambda(s) \leq \inf_{\tilde{q} < s} \frac{\mu(s, \tilde{q})}{s - \tilde{q}}$$

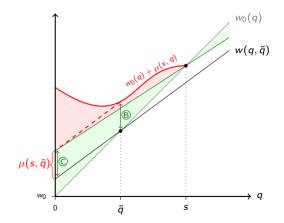


General Characterization – Condition C (binding)

 $orall ilde{q}, s \in \mathbb{R}_{+}^{*} ext{ with } s > ilde{q},$

$$w(0,s)-w(0,\tilde{q})\leq \mu(s,\tilde{q})$$

$$\Leftrightarrow \lambda(s)s - \lambda(\tilde{q})\tilde{q} \leq \mu(s, \tilde{q})$$

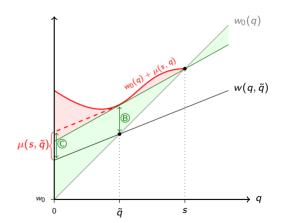


General Characterization - Condition C (not binding)

 $orall ilde{q}, s \in \mathbb{R}_+^* ext{ with } s > ilde{q},$

$$w(0,s)-w(0,\tilde{q})\leq \mu(s,\tilde{q})$$

$$\Leftrightarrow \lambda(s)s - \lambda(\tilde{q})\tilde{q} \leq \mu(s, \tilde{q})$$



Are these contracts truthful?

- A truthful contract always induces a truthful signal in equilibrium
- RPD contracts are not all truthful: some agents may understate their expected production
 - The agent would do so to mitigate risk (get a "flatter" payment)
 - The principal would be better off as it reduces the expected payment
- Contract w is truthful if a stricter version of Condition (C) is met

Ranking RPD contracts

The set of contracts that RPD w_0 over Ω

- Is only **partially ordered** by \succ_{Ω}
- The partial order is straightforward for truthful contracts (only)

For w_1, w_2 two truthful contracts with $w_1 \succeq_{\Omega} w_0$, $w_2 \succeq_{\Omega} w_0$, and λ_1, λ_2 the corresponding defining functions,

- $w_1 \succeq_{\Omega} w_2$ if and only if $\forall s \in \mathbb{R}_+^*$, $\lambda_1(s) \geq \lambda_2(s)$,
- $w_1 \succ_{\Omega} w_2$ if in addition $\exists s \in \mathbb{R}_+^*$ with $\lambda_1(s) > \lambda_2(s)$.
- Implies that the poset of truthful contracts that RPD w_0 is a **lattice**, and thus contains a **unique robustly-undominated contract** w^*

Identify w^* while ignoring (C)

Under some conditions, w^* can be identified

- by saturating Condition (B)
- while ignoring Condition (C)

If the minimum lying cost function μ is such that:

- $\bar{\lambda}(s) \equiv \inf_{q \in [0,s)} \frac{\mu(s,q)}{s-q}$ is weakly decreasing in s,
- but $\bar{\lambda}(s)s$ is weakly increasing in s,

then the contract w^* defined by $\lambda^*(s) = \min\{\bar{\lambda}(s), 1\}$ is the unique robustly undominated contract among $RPD_{\Omega}^{\mathcal{T}}(w_0)$.

Lying cost depending on the magnitude of the lie

In particular, these conditions are met by **minimum lying cost function**s in the form

$$\mu(s, ilde{q}) = d(s - ilde{q}) \quad ext{or} \quad \mu(s, ilde{q}) = d\left(rac{s - ilde{q}}{s}
ight)$$

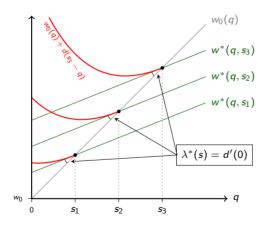
where $d: \mathbb{R} \to \mathbb{R}$ is

- ullet weakly increasing on \mathbb{R}_+
- ullet weakly decreasing on \mathbb{R}_-

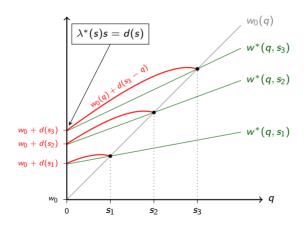
Leads to a straightforward solution when:

- *d* is **convex**: $\lambda^*(s) = \min\{d'(0), 1\}$
- d is **concave**: $\lambda^*(s) = \min\{d(s)/s, 1\}$ or $\lambda^*(s) = \min\{d(1)/s, 1\}$

Convex lying cost



Concave lying cost



Takeaways

Risk-sharing contracts can be designed

- While relying on no common knowledge assumption about the agent's technology or risk preferences
- At **no loss in comparison to the marginal reward contract**, that is Pareto-optimal in the risk neutral case
- Insofar as partially verifiable information on the effort provided by the agent can be collected
- \Rightarrow We characterize **robustly optimal contracts** depending on how costly it is for the agent to misrepresent his action to the principal
- \Rightarrow Robust risk-sharing motivates the use of **linear contracts** where some share of the risk is taken by the principal

Thank you for your attention.

Contact: cl.clement.leblanc@gmail.com

