
Robust Production Insuring Procurement and their Pitfalls∗

Laurent Lamy†and Clément Leblanc‡

April 23, 2024

Abstract

In a procurement setting involving both moral hazard and ex post risk where the contract-
ing rule depends on realized production, we formalize a concept of robust insurance provision
which reduces risk premiums with a prior-free approach. This leads us to analyze procure-
ment where the auction-determined contract depends not only on the contractor’s bid but
also on a declaration on his expected production. For any given menu of linear contracts, we
characterize the corresponding production-insuring menus and establish a general incentive
to overstate expected production. We then analyse the pitfalls associated with false declara-
tions in the lowest-price auction while putting aside moral hazard. We illustrate our analysis
through simulations calibrated on a few offshore wind power auctions in France.
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Contracts in which the remuneration to the contractor is a linear function of the ex post ob-
served output are widespread in practice. Various theoretical justifications have been proposed
for such linear contracts. If the risk-neutral buyer values the contractor’s output linearly, and if
the contractor is risk neutral, then welfare-maximizing contracts take the form of linear contracts:
Aligning the contractor’s payoff with the buyer’s private valuation of the output – also referred
to as providing marginal rewards – is the only way to solve the moral hazard problem in a ro-
bust manner (Hatfield, Kojima and Kominers, 2018). When the buyer faces multiple firms among
which she wants to select the most efficient contractor, the adverse selection problem can be solved
with a second-price auction in which bidders compete for a fixed cash transfer in addition to a
subsidy equal to the buyer’s private valuation of the output: this auction mechanism corresponds
to the celebrated Vickrey-Clarke-Groves (VCG) mechanism, which not only implements the ex
post efficient allocation in dominant strategies but also induces ex ante efficient private investment
(Rogerson, 1992). The VCG mechanism is also known to maximize the principal’s payoff in pri-
vate value environments with endogenous entry (Jehiel and Lamy, 2018). Alternative theoretical
approaches support the use of linear contracts by profit-maximizing principals while maintaining
that the contractor is risk neutral and that the principal values output linearly: The optimal
contract from the buyer’s perspective is linear if she does not know the set of hidden actions
available to the contractor and adopts a maxmin optimality criterion (Carroll, 2015). Dynamic
moral hazard settings – where agents can adjust their effort according to past performance – also
provide support for linear contracting (Holmstrom and Milgrom (1987), Chassang (2015)).

However, these theoretical justifications for linear contracts assume that the contractor is risk
neutral. If the contract involves ex post risk, then a risk-averse contractor would demand higher
subsidies to obtain the same level of expected utility as a risk-neutral firm. In a competitive
procurement setting, this translates into higher equilibrium prices and thus higher expected costs
for the buyer, as analyzed by Eső and White (2004) in an auction setting.1 Transferring an
exogenous risk from the contractor to the risk-neutral buyer allows to reduce risk premiums
and thus procurement costs (Engel, Fischer and Galetovic, 2013). As an example of the potential
benefits of risk-sharing contracts, Engel, Fischer and Galetovic’s (2001) seminal contribution about
competitive concession awarding mechanisms pleads for least-present-value-of-revenue auctions in
which the duration of the concession is adjusted to demand realizations: According to their
calibration exercise for a highway franchising project in Chile, such risk-sharing contracts could
reduce expected public spending by more than 20% compared to the widely used fixed-term
contracts in which contractors bid on tolls for a fixed duration.2

1See Vasserman and Watt (2021) for a survey of the theoretical and empirical work on auctions with risk
aversion.

2Nevertheless, such contracts reduce the contractor’s incentives to make costly efforts to increase demand, as
argued by Tirole (1997).
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We consider a procurement setting with moral hazard and ex post risk: the contractor takes
an unobserved costly action consisting in choosing a project that stochastically determines a
production in R+. Starting from a procurement where the buyer’s payment to the contractor is a
linear function of the realized production (a function that also depends on the contractor’s bid),
we question whether it is relevant for the buyer to deviate from such menus of contracts in order
to reduce the contractor’s risk exposure. We address insurance provision while remaining agnostic
about both the portfolio of projects available to each bidding firm and its risk preferences and cost
functions. To our knowledge, our contribution is the first to address risk sharing in line with the
so-called robust mechanism design and contracting literature (see Bergemann and Morris (2012)
and Carroll (2019) for introductions to this flourishing topic).3

The starting point of our analysis is the formalization of a general notion of robust insurance
provision that compares contracts with a prior-free approach. We then obtain, straightaway from
the definition, that it is impossible to design a contract that provides more insurance than a given
benchmark contract for any possible distribution. Therefore, having distributions with different
expected production precludes the possibility of designing contracts that provide more insurance
than a given one if the contracting rule does not depend on a declaration about the contractor’s
project. This impossibility not only justifies the introduction of a declaration in addition to the
price bids in the procurement rules, but also leads us to consider procurement in which bidders
declare their expected production.

Our work makes two main theoretical contributions. First, we characterize the set of contracts
that provide more insurance than a given linear contract (i.e., a contract that pays the contractor
λ · q + µ as a function of realized production q ≥ 0) for two classes of possible distributions
of ex post risk among distributions whose expected production q̄ is known. If the distributions
are fully unrestricted, then production-insuring contracts take the form of the linear contracts
λ′ · q+ (λ−λ′) · q̄ where the slope λ′ is less than λ. If the set of possible distributions is restricted
to symmetric and single-peaked distributions, then production-insuring contracts are those that
satisfy a symmetry property around the expected production and that over-remunerate (resp.
under-remunerate) production for realizations that are smaller (resp. greater) than the expected
production q̄. Second, we establish that such production-insuring menus of contracts suffer from a
manipulation concern if some firms – referred to as strategic firms – are able to report the expected
production that maximizes their payoff rather than the actual one: a firm whose risk aversion is

3In contrast, McAfee and McMillan (1986) address the trade-off between risk sharing, efficiency, and rent
minimization in a Bayesian manner. See also Laffont and Tirole (1986) and McAfee and McMillan (1987) for
the characterization of optimal procurement with an approach à la Myerson (1981) when firms are risk neutral:
Optimal procurement can be implemented as a menu of linear contracts where agents self-select as a function of
their one-dimensional private signals. In contrast, optimal contracting under multidimensional private information
requires nonlinear pricing under Bayesian approaches (see Rochet and Stole (2003) for a survey on multidimensional
screening).
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limited would always benefit from overstating its expected production. Furthermore, we show that
such misreporting is detrimental to the buyer when such a firm becomes the contractor, insofar
as the buyer will raise a lower expected payoff than the one she would have expected to raise with
the same offer but stemming from a truthful contractor. This vulnerability holds not only for
some specific distributions but for any distribution against which the production-insuring menu
of contracts is presumed to hedge.

To analyze the consequences of such manipulation, we next consider a setting without moral
hazard where the portfolio of projects available to all firms is a singleton, i.e. where the decision of
each bidding firm in the procurement reduces to a bid and a declaration about his project. For the
winner-determination rule, we consider the lowest-price auction, where the firm that submitted
the lowest bid becomes the contractor. Adopting a production-insuring menu (e.g., regarding the
set of symmetric and single-peaked distributions) then involves a trade-off between two effects.
It lowers the zero-profit bid of each firm, i.e., the bid that makes the firm indifferent between
winning and losing the procurement auction, and then lowers the equilibrium price relative to
the linear contract benchmark. However, these lower zero-profit bids reflect both reduced risk
premiums when firms truthfully report their expected production and the contractor’s benefits
from overstating his expected production. If the contractor is a strategic firm, then the equilibrium
price does not properly reflect the cost that the buyer ends up paying on average. We analyze
this trade-off under some restrictions on bidders’ beliefs about their competitors. In particular,
we show that the gains from lower prices are always delusive when firms are symmetric, risk
neutral, and at least one of them is strategic. In general, however, the impact of adopting a
production-insuring menu is an empirical question. We illustrate our insights with some offshore
wind auctions in France, where the procurement rules involved a production-insuring menu of
contracts. We estimate that the potential losses from misreporting are 15 times larger than the
potential benefits from reduced risk premiums under truthful reporting.

The remainder of the paper is organized as follows. Section 1 sketches the main lines of our
analysis in a simplified environment. Section 2 presents the contracting environment with moral
hazard and ex post production risk, and introduces the novel concept of production-insuring
contracts that hedge the contractor against production risk for any distribution in a given set of
production distributions (relative to a benchmark contract). Section 3 presents the procurement
game where bidders make a declaration about the characteristics of their project in addition to
their bid. We introduce the concept of production-insuring menus of contracts (relative to a
given procurement design), where each contract in the menu is production-insuring with respect
to the set of production distributions associated with the same declaration. Furthermore, we
consider a setting where the buyer may suffer from a lack of screening ability in that some firms
are free to misreport their project characteristics. The core of the paper is Section 4 which is
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devoted to production-insuring menus based on expected production and compared to menus
of linear contracts that do not depend on any declaration. We begin with a discussion of the
optimality status of such menus of linear contracts under risk neutrality, which justifies their
use as a benchmark. We then characterize production-insuring contracts and analyze bidders’
incentives to misreport their expected production and the associated deception of the buyer.
Section 5 analyzes the consequences for the buyer’s expected cost of using manipulable menus in
a setting without moral hazard and when bidders differ only in terms of their ability to make false
declarations on their project. A calibration is developed in Section 6 to illustrate the potential
gains and pitfalls of a specific production-insuring menu that has been used in France for some
large wind power auctions. Extensions of the model are discussed in Section 7, related literature
is discussed in Section 8, and concluding remarks are made in Section 9. The proofs of our main
results are presented in the Appendix, while additional material is available in a Supplementary
Appendix (henceforth the SA).

1 Illustration in a simplified environment

Consider a risk-neutral buyer willing to pay a risk-averse contractor to build a project whose
output q ∈ R+ is subject to ex post risk. The distribution of q, denoted by the PDF f , depends
on the contractor’s technology, which is unobserved by the buyer. Suppose the buyer values the
contractor’s output linearly, at v per unit. If T : R+ 7→ R is the contract that specifies the buyer’s
payment to the contractor as an increasing function of his output q, then the buyer’s expected
payoff is equal to Ef [v · q−T (q)]. Since the buyer is risk neutral, she is willing to take the risk for
herself in order to make the contractor better off, and ultimately to bargain for a lower expected
payment, or to attract lower bids in a competitive procurement setting.

Take as a benchmark the linear contract T (q) = λ · q with λ = v, which aligns the contractor’s
revenue with his contribution to social welfare. The buyer might be tempted to design an alter-
native contract T ′ that would be strictly preferred by any strictly risk-averse contractor (i.e., for
any strictly concave utility function U):

Ef [U(T ′(q))] > Ef [U(T (q))] (1)

while preserving the same expected payment made by the buyer:

Ef [T ′(q)] = Ef [T (q)] = λ · Ef [q]. (2)

One way to do this would be to switch to a “flatter” linear contract T ′(q) = λ′ · q + µ by
lowering the per-unit payment, i.e. λ′ < λ, while compensating with a cash transfer µ. Setting
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the cash compensation at µ = (λ−λ′) ·Ef [q] guarantees the same expected payment, i.e. that (2)
is satisfied. The inequality λ′ < λ, which means that the risk associated with the realization of q is
reduced, further implies that (1) is satisfied. However, the design of such a “production insuring”
contract depends on the expected production Ef [q], which here may be private information of the
contractor.

Suppose for simplicity that the contractor is either of low type, with expected production q̄L,
or of high type, with expected production q̄H > q̄L. Applying the above idea leads to offering
a binary menu of “flatter” linear contracts, T ′q̄L and T ′q̄H , having in mind that the contract T ′q̄k
is suitable for the contractor with expected production q̄k (for k = L,H). For a given per-unit
payment λ′ < λ, the corresponding cash compensations µq̄k should be set so that µq̄k = (λ−λ′) · q̄k
in order to satisfy (2). If the contractor’s type is not verifiable – and if λ′ is the same for both
contracts4 – then there is a clear incentive for a low-type contractor to choose the contract T ′q̄H
(i.e., to report a high type), which will increase his payment for any possible production realization
q (as illustrated in the left panel of Figure 1).

In this paper, we show that no contract can satisfy both (1) and (2) for any possible distri-
bution, and that the linear contracts λ′ · q + (λ − λ′) · q̄ with λ′ < λ are the only contracts that
satisfy (1) and (2) for all distributions whose expected value is q̄. Furthermore, we establish that
when faced with a menu of such contracts, a risk-neutral firm or a firm with low risk aversion
will always increase its expected payoff by reporting a type higher than its true type. In other
words, these firms have an incentive to overstate their expected production. However, reducing
the set of distributions over which we impose that the conditions (1) and (2) are satisfied for a
given expected value q̄ allows for a larger class of production-insuring contracts. In particular,
with the only prior that the distribution of q is symmetric and single-peaked, the buyer can design
such contracts simply by ensuring that they: 1. Increase the payment to the contractor for below-
average realizations of q (and conversely decrease the payment for above-average realizations of
q), relative to the benchmark T , and, 2. Preserve the buyer’s expected payment to the contractor
through a symmetry condition around the expected production q̄. See the right panel of Figure
1b for an illustration with the green (resp. red) color for the low (resp. high) type contract. In
general, misreporting incentives are less straightforward with such potentially nonlinear contracts.
When switching from T ′q̄L to T ′q̄H , the gains for realizations of q in the interval [q̄L, q̄H ], where we
have T ′q̄H (q) ≥ T ′q̄L(q), could be offset by the losses outside this interval. However, a key result of
this paper is that any menu of contracts that provides insurance in a prior-free way with respect
to the set of symmetric and single-peaked distributions induces the contractor to overstate his
expected production, as long as his risk aversion is not too high. This further implies that the

4If the contract is steeper for the high type than for the low type, λ′H > λ′L a risk-averse contractor faces a
trade-off between increasing his expected payment by choosing T ′q̄H and decreasing his risk by choosing T ′q̄L .
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Figure 1: Contracts that transfer risks from the contractor to the buyer

buyer suffers from a form of deception: on average, she pays more than she would have paid if
the contractor had been truthful.

This incompatibility between robust insurance and incentives has specific consequences in a
procurement setting. To illustrate, consider the case of two payoff-symmetric, low-type firms
competing in the VCG mechanism, i.e., in the present setting, where the firm with the lowest bid
becomes the contractor with a contract Tb(q) := v ·q+ b, where b is the second-lowest bid. If firms
are risk neutral, it is a weakly dominant strategy for them to bid their zero-profit bid c−v · q̄L, i.e.
their cost c to build the project minus their expected revenue. If instead firms are risk-averse, their
equilibrium bid beqU is characterized by the zero-profit condition Ef [U(v · q̄L + beqU )] = U(c), where
U is their (concave) utility function. The concavity of U implies that beqU is greater than c− v · q̄L
which reflects the risk premium associated with risk aversion. To mitigate this risk premium, the
buyer may decide to replace the menu of linear contracts Tb with a menu of production-insuring
contracts T ′b,q̄(q) as discussed above: for any given bid b, firms would necessarily raise a higher
expected payoff under this latter contract, allowing them to bid lower while maintaining a positive
payoff. As a consequence of (2), the lower equilibrium bids result in a lower expected payment to
the contractor if both firms truthfully report that they have a low type.

The picture is very different if the contractor has strategically reported a high type. To
illustrate what may happen, suppose the buyer implements one of the menu of “flatter” linear
contracts discussed above T ′b,q̄(q) = λ′ · q+ (v− λ′) · q̄+ b, with λ′ < v, and that the firms are risk
neutral. If the contract is T ′b,q̄H and if the buyer believes that the contractor is of high type, then
she expects to pay on average v · q̄H + b to the contractor for the expected production q̄H and thus
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expects a payoff −b, but ends up with a payoff −b− (v − λ′) · (q̄H − q̄L). Because of this form of
deception, the lower equilibrium bids do not translate into a higher expected payoff for the buyer.
The equilibrium bid depends actually on the strategic/truthful behavior of the firms. If both firms
are strategic in reporting their type, then the equilibrium bid is c− v · q̄L − (v − λ′) · (q̄H − q̄L),
which gives the buyer the same payoff as under the baseline menu of contracts Tb, i.e., v · q̄L − c.
However, if a single firm is strategic, the equilibrium bid is fixed by the truthful firm and is thus
the same as under the baseline menu of contracts, i.e., c− v · q̄L. The strategic firm then becomes
the contractor and reaps a manipulation rent at the expense of the buyer, whose payoff falls to
v · q̄L − c− (v − λ′) · (q̄H − q̄L). When risk aversion is introduced, the outcome is not as clear-cut
and will be illustrated in our calibration exercise.

2 The contracting environment

Let us now turn to the more general model examined in this paper. A buyer organizes a procure-
ment auction to select a contractor to develop an indivisible risky project. The performance of
the project is characterized by the ex post publicly observable and contractible variable q ∈ R+,
hereafter referred to as the production.5 We consider a setting where output q results both from
an unobservable investment made by the contractor and from an exogenous random shock.

Projects: A project, denoted by f , corresponds to a PDF on a compact subset of R+. Let F
denote the corresponding (atomless) CDF, F the portfolio of possible projects from the buyer’s
perspective, and, for each firm i, Fi ⊆ F the finite set of projects it can actually choose. Once
the contractor i (secretly) chooses a project f ∈ Fi, his production q is distributed according to
the PDF f . We use the shortcut notation q̄f ≡ Ef [q] > 0 for the expected production (or just q̄
if there is no ambiguity about the distribution being discussed).

Contracts: A contract between the buyer and the contractor is a continuously increasing
function T : R+ 7→ R, which maps a production q by the contractor to a payment T (q) by the
buyer. Since we assume that there are no additional costs associated with production once the
contractor has chosen his project, the strict monotonicity of T guarantees that the contractor
would always lose from rationing his production ex post.

The buyer’s preferences: If the monetary transfer to the contractor is t and the quantity
produced is q, the buyer’s payoff is assumed to be v · q − t, where v > 0 denotes the buyer’s
valuation per unit. The buyer is assumed to be risk neutral, so if the contract is T and the
contractor chooses project f , then the buyer’s expected payoff is v · Ef [q]− Ef [T (q)].

5The variable q could also correspond to a measure of quality or, more generally, to any kind of one-dimensional
verifiable measure characterizing the contractor’s output.
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Firms’ payoff characteristics: Consider N ≥ 2 competing firms. Each firm i = 1, . . . , N is
characterized by its (non-empty) private portfolio of projects Fi, a cost function Ci : Fi 7→ R+,
and a continuously differentiable increasing utility function Ui : R 7→ R with the normalization
Ui(0) = 0. To capture risk aversion, we further assume that the utility functions Ui, i = 1, . . . , N ,
are concave. We say that a firm with utility function U is risk neutral if U is linear, and risk
averse (resp. strictly risk averse) if U is concave (resp. strictly concave).6 Last, we say that
firms are payoff-symmetric if both Ci and Ui do not depend on i. Under contract T , the expected
payoff of contractor i implementing project f is Ef [Ui(T (q)−Ci(f))]. Losing the auction and not
implementing a project results in a payoff of Ui(0) = 0.

Social welfare: If firms are risk neutral, then the (utilitarian) social welfare does not de-
pend on the monetary transfer between the buyer and the contractor: if the buyer contracts
with firm i and the latter chooses project f , then social welfare is equal to v · q̄f − Ci(f). For
each firm i, let F∗i := Argmaxf∈Fi {v · q̄f − Ci(f)} denote the set of socially optimal projects
when firm i is the contractor, f∗i ∈ F∗i is a corresponding socially optimal project, and SW ∗i :=

maxf∈Fi {v · q̄f − Ci(f)} is the corresponding social welfare. A firm i∗ ∈ Argmaxi=1,...,N SW
∗
i

is called a (socially) optimal firm. We further denote SW ∗ := maxi=1,...,N SW
∗
i as the welfare

associated with an optimal project among all firms, and SW ∗−i := maxj 6=i SW
∗
j as the welfare

associated with an optimal project among the competitors of firm i.7 It is optimal to develop a
project under the condition that SW ∗ < SWNO, where SWNO is the buyer’s payoff if no project
is developed. For simplicity, we always assume that SW ∗i > SWNO for each firm i.

Throughout our analysis, we mainly consider that the buyer’s objective is to maximize her
expected payoff, an objective that is actually congruent with social welfare under additional
assumptions, as discussed in Section 4.1. In contrast to the optimal auction literature à la Myerson
(1981), we do not specify the buyer’s beliefs about firms’ characteristics in a Bayesian manner.
Rather, our approach belongs to the robust mechanism design paradigm: we wish to design
contracts that perform well for any possible Bayesian specification of the buyer’s beliefs about the
distribution of firms’ characteristics, and this given that the buyer knows that the contractor’s
project necessarily belongs to the portfolio of possible project F .

We now introduce a partial order that compares contracts in terms of insurance provision.

6We say that a function U : R 7→ R is strictly concave if U ′(x) < 0 for any x ∈ R.
7We naturally have SW ∗ ≥ SW ∗−i∗ .
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Definition 1. Take F̂ ⊆ F . Consider two contracts T (.) and T ′(.) such that Ef [T (q)] = Ef [T ′(q)]

for any f ∈ F̂ . We say that T ′(.) provides more insurance than T (.) on F̂ if

Ef [U(T ′(q))] ≥ Ef [U(T (q))] (3)

for any f ∈ F̂ and any concave utility function U , and if the inequality is strict for any strictly
concave utility function U .

According to this definition, a contract that provides more insurance than another on a given
subset of projects leaves the risk-neutral buyer indifferent, but is preferred (resp. strictly preferred)
by a risk-averse (resp. strictly risk-averse) contractor for any project choice in the given set F̂ .

The existence of contracts that provide more insurance than a given one depends crucially on
how large the set F̂ is. If we take F̂ to be the full set of atomless distributions whose support is
a compact subset of R+, a set denoted next by Fall, then no such contracts exists.

Proposition 1. For any possible contract T , there is no contract that provides more insurance
than T on Fall.

Proof: For any given q̂ > 0, we can construct a sequence of distributions {fn}n∈N such that
fn ∈ Fall converges to the Dirac measure concentrated at q̂. The equality Efn [T (q)] = Efn [T ′(q)]

for any n ∈ N implies that T ′(q̂) = T (q̂). This equality for any q̂ ∈ R+ then precludes any strict
version of the inequality (3) when U is strictly concave. Q.E.D.

It is straightforward that the same reasoning applies to many subsets of Fall, including the
set of symmetric and single-peaked distributions Fsym (which will be discussed extensively in the
remainder of the paper),8 and also various parametric subsets of it, such as the uniform or the
symmetric triangular distributions. It also extends to subsets of the above sets that include all
projects whose expected production belongs to a non-degenerate interval [qmin, qmax], i.e., with
qmax > qmin. Formally, we obtain that T ′(q) = T (q) for any q ∈ [qmin, qmax], so that inequality
(3) stands as an equality for any distribution whose support is a subset of [qmin, qmax], regardless
of the utility function U .

Such impossibility results invite us to consider contracts that, in order to provide more insur-
ance, would have to depend on some characteristics of the project: Insurance provision by a single
contract design can typically be achieved only on a subset of the portfolio of available projects F ,
one in which projects share some common characteristics. In particular, the latter result above
suggests that projects with different expected production should be treated with different con-
tracts. This leads us to introduce procurement games in which firms submit not only a monetary

8Formally, a PDF f ∈ Fsym satisfies: f(q̄ + x) = f(q̄ − x) for any x ∈ [0, q̄], f(q) = 0 for q > 2q̄ and f is
non-decreasing on [0, q̄] and non-increasing on [q̄, 2q̄].
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bid but also a declaration about some characteristics of their project. The next section remains
very general about the nature of the declaration, while the remainder of the paper will consider
procurement games where the declaration corresponds to the expected production of the project.

3 The Procurement Game with Partial Screening

Let us introduce Σ, a partition of F used to parameterize a menu of contracts offered to firms in a
procurement auction. Let σ̃ : F 7→ Σ be the function that maps each project f to the subset in the
partition Σ that contains f . The finest (resp. coarsest) partition corresponds to the case where
σ̃(f) = {f} (resp. σ̃(f) = F) for each f ∈ F . The partition Σ is related to the ability of the buyer
to verify the characteristics of the project f to be implemented, and then to constrain (at least
some) firms to report σ̃(f) when choosing the project f . In the following, we distinguish between
firms that are subject to such a constraint, called truthful firms, and those that are exempt from
it, called strategic firms.

In the procurement game, each firm is invited to submit a bid b ∈ R and a declaration σ ∈ Σ

about its project. The applicable contract then depends on the contractor’s bid and declaration,
to be picked from a menu of contractsM := {T(b,σ)}(b,σ)∈R×Σ. We assume throughout our analysis
that the function b 7→ T(b,σ)(q) is continuously increasing for any q > 0 and any σ ∈ Σ, and that
for any firm i = 1, . . . , N and any project f ∈ Fi, T(b,σ)(q) − Ci(f) is strictly negative (resp.
positive) if b is small (resp. high) enough. A firm is said to make the decision d = (b, f, σ) when
it decides to choose project f ∈ Fi, to declare σ ∈ Σ about its project, and to bid b ∈ R. Let
Πi(d) := Ef [Ui(T(b,σ)(q) − Ci(f))] denote the expected payoff of firm i conditional on winning
with decision d. It follows from the restrictions we imposed on the menu of contracts M that
for each pair (f, σ) ∈ Fi × Σ, the function b 7→ Πi(b, f, σ) is increasing, and that Πi(b, f, σ) is
strictly negative (resp. strictly positive) if b is small (resp. high) enough. We always consider
pay-as-bid auctions, where the contract signed by the winning firm is the contract T(b,σ), where b
is the winning firm’s bid (or winning bid) and σ is its declaration. Since we restrict our attention
to pay-as-bid auctions, for a given bid b, a firm’s incentives with respect to its project choice
f and its declaration σ do not depend on its beliefs about the characteristics of its competitors.
Without further restrictions (e.g., risk neutrality), this separability property would not hold under
alternative pricing rules (e.g., second-price auctions). For the winner-determination rule, we
consider by default the lowest-price auction, where the buyer selects the firm with the lowest
bid (possibly with a reserve above which the procurement remains unsuccessful) independently of
firms’ declarations about their project. Alternative winner-determination rules are discussed in
Section 7.

We consider then two types of firms. The so-called strategic firms are assumed to be free to
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make any decision in R×Σ×Fi. On the contrary, the so-called truthful firms are constrained to
make a declaration σ that matches their project choice f , i.e. their decision is constrained by σ =

σ̃(f). We denote k ∈ {T, S} the type of a firm, with k = S if the firm is strategic and k = T if the
firm is truthful. We assume that all firms, whether strategic or truthful, maximize their expected
payoff. Consider a firm i that has submitted the bid b ∈ R. If it is truthful, it will choose a project
f∗ ∈ Argmaxf∈Fi Πi(b, f, σ̃(f)) ≡ fTi (b) and submit the declaration σ̃(f∗). If it is strategic, then
it will choose a pair of project and declaration (f∗, σ∗) ∈ Argmax(f,σ)∈Fi×Σ Πi(b, f, σ) ≡ Q∗i (b).
Let ΠT

i (b) (resp. ΠS
i (b)) denote the corresponding expected payoff of firm i conditional on winning

with bid b if i is truthful (resp. strategic). Formally, we have then9

ΠT
i (b) := max

f∈Fi
Πi(b, f, σ̃(f)) and ΠS

i (b) := max
(f,σ)∈Fi×Σ

Πi(b, f, σ).

Since the set of decisions available to truthful firms is a subset of that available to strategic firms, it
is straightforward that ΠS

i (b) ≥ ΠT
i (b) for any bid b and any firm i. As a maximum of continuously

increasing functions that cross zero, the function b 7→ Πk
i (b) is continuously increasing for both

k = T and k = S, and is positive if b is large enough. Let us assume that Πk
i (b) < 0 if b is

small enough such that there exists a (unique) zero-profit bid denoted by b̂ki and characterized by
Πk
i (̂b

k
i ) = 0. We also use the notation b̂ki (M) when we want to make explicit the dependence of

the zero-profit bids on the menu of contracts. Since ΠS
i (b) ≥ ΠT

i (b) for any bid b, we have b̂Si ≤ b̂Ti
and the inequality is strict if the former inequality is always strict. In words, strategic bidders are
prone to outbid truthful bidders, ceteris paribus.

The relevant specification for Σ is closely tied to the strategic/truthful dichotomy we introduce.
The implicit idea motivating our analysis is that the buyer is able to verify that some firms (the
truthful ones) make a reliable declaration about the project they intend to implement, but, on
the contrary, is unable to screen some other firms (the strategic ones). The concept of a truthful
firm is thus only relevant if the partition Σ is not too fine: we have in mind environments where
it would be unrealistic to assume that the buyer is able to screen all the details of the project.

Timing of the game

1. The buyer commits to the procurement game (i.e., the menu of contractsM and the winner-
determination rule).

2. Each firm i = 1, . . . , N learns its payoff characteristics Fi, Ci and Ui and whether it is
truthful or strategic.

9Throughout our analysis, we implicitly assume that these maximization programs (as well as the welfare
maximization programs presented earlier) have a genuine solution. This is straightforward if Fi is finite. In
general, it would be necessary to impose more structure (e.g., compactness of the set Fi and continuity of the cost
function and the menu of contracts).
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3. Each firm i makes a decision di, i.e., submits a bid bi, (secretly) chooses a project fi ∈ Fi,
and makes a declaration σi ∈ Σ to the buyer.10

4. The winning firm iw is selected according to the winner-determination rule and becomes
the contractor with the contract T(biw ,σiw ). Under the lowest-price auction, we have iw ∈
Argmini=1,...,N bi).

5. The contractor pays the sunk cost Ciw(fiw) to implement the project fiw and the production
q is drawn according to the distribution fiw . The contractor receives the amount T(biw ,σiw )(q)

from the buyer.

The equilibrium concept: Without further restrictions, pay-as-bid auctions are known to
suffer from equilibrium multiplicity, especially under complete information.11 We thus restrict
our equilibrium analysis to undominated strategies. In particular, we ignore equilibria in which
firms, because they expect to be outbid for sure, make decisions that would generate an expected
negative payoff conditional on winning.12 Thus, we assume that the equilibrium bid bi submitted
by a type-k firm i (k = T, S) satisfies Πk(bi) ≥ 0, or equivalently bi ≥ b̂ki . The undominated
strategy assumption also implies that for any given bid b, a truthful (resp. strategic) firm i must
choose a project f ∈ fTi (b) (a pair of project and declaration (f, σ) ∈ Q∗i (b)). Moreover, for
a given equilibrium bid bi, we assume that a strategic firm will prefer a pair (fi, σi) such that
σi = σ̃(fi) if there is such a pair in Q∗i (b): if being truthful does not reduce its payoff, then a
strategic firm will prefer to make a truthful declaration.13

An aspect of the procurement game that is central to our analysis is whether firms would
benefit from deviating from a truthful declaration about their project, i.e., whether the optimal
decision di of any given strategic firm i is such that σi 6= σ̃(fi).

Definition 2. For a given bid b and a given firm i (characterized by the cost function Ci and
the utility function Ui), we say that the procurement/menu of contracts is strategy-proof (resp.
manipulable) if ΠS

i (b) = ΠT
i (b) (resp. ΠS

i (b) > ΠT
i (b)). We say that a procurement/menu of

contracts is strongly strategy-proof if it is strategy-proof for any given bid b, cost function Ci and
utility function Ui.

Let f ∈ fTi (b) be an optimal project for a truthful firm i with bid b. According to the definition
above, if the procurement is strategy-proof for bid b and firm i, then the same project and report

10Since the choice of the project is secret, our analysis extends to environments where this choice is made at the
beginning of stage 5. In such a case, the choice of a truthful contractor is bound by his declaration.

11In standard first-price auctions under complete information, any price between the highest and second-highest
valuation can be sustained in equilibrium.

12Standard refinements, such as the trembling-hand perfect equilibrium (see Fudenberg and Tirole, 1991), allow
those irrelevant equilibria to be eliminated.

13This is in line with Chen, Kartik and Sobel’s (2008) selection criterion in cheap talks.
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are also optimal for a strategic firm, i.e., (f, σ̃(f)) ∈ Q∗i (b). Since we have made the assumption
that a strategic firm will prefer a truthful decision if it does not reduce its payoff, we have that
in a strongly strategy-proof procurement every strategic firm i will declare its project truthfully:
σi = σ̃(fi). Conversely, if the procurement is manipulable for a given bid b and firm i, then for
any pair (f, σ) ∈ Q∗i (b) we have σ̃(f) 6= σ, i.e., any pair (f, σ) that is optimal for a strategic firm
i implies a false declaration.

Definition 3. For a given contractor having won with a decision d = (b, f, σ), we say that the
buyer suffers from deception if her expected payoff v · q̄f − Ef [T(b,σ)(q)] is strictly smaller than
minf ′∈F|σ̃(f ′)=σ v · q̄f ′ − Ef ′ [T(b,σ)(q)].

In words, the buyer suffers from deception if her payoff is strictly smaller than the lowest
possible payoff she could expect with a truthful contractor.14 Henceforth, if the contractor is
truthful, the buyer cannot suffer from deception. If the procurement is strongly strategy-proof,
then the contractor always behaves as a truthful firm (even if it is strategic). We then obtain:

Corollary 2. If the procurement is strongly strategy-proof, then the buyer never suffers from
deception.

Under a menu of contracts where T(b,σ) does not depend on σ, it is straightforward that the
procurement is strongly strategy-proof. In equilibrium, the fact that firm i wins the procurement
with bid b, for which the procurement is manipulable, does not imply that the buyer suffers from
deception. In fact, without further restrictions, the contractor may choose a pair (f, σ) such that
v · q̄f −Ef [T(b,σ)(q)] > minf ′∈F|σ̃(f ′)=σ v · q̄f ′ − Ef ′ [T(b,σ)(q)], i.e., the buyer may get a payoff that
is larger than the smallest possible payoff she could expect with a truthful contractor. It will
become clear later why, in the class of procurement games of interest, failure of strategy-proofness
then leads to deception.

3.1 Production-insuring menus of contracts

Given our partial order comparing contracts with respect to insurance provision, and our class of
procurement games – or equivalently, menus of contracts – for a given partition Σ of F , we obtain
a partial order comparing procurement games with respect to insurance provision.

14Note that the buyer is agnostic about the portfolios of projects {Fi}i=1,...,N for the firms: she implicitly
considers that any project f ∈ F could be chosen by the contractor, and then deception is not related to the
contractor’s identity.
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Definition 4. Consider two menus of contracts M = {T(b,σ)}(b,σ)∈R×Σ and M′ =

{T ′(b,σ)}(b,σ)∈R×Σ. We say thatM′ provides more insurance thanM if T ′(b,σ) provides more insur-
ance than T(b,σ) on σ for any pair (b, σ) ∈ R× Σ.15

If a menu of contracts provides more insurance than another, then for any given decision
made by a truthful contractor, his payoff is greater in the former than in the latter. Increasing
the expected payoff of risk-averse truthful firms for any given bid then leads to a decrease in their
zero-profit bid, as formalized by the first part of the following proposition.

Proposition 3. If a menu of contracts M′ provides more insurance than a menu M, then the
zero-profit bid of any truthful firm i is lower under M′ than under M, and strictly lower if i is
strictly risk-averse. Formally, b̂Ti (M′) ≤ b̂Ti (M) if Ui is concave, and the inequality is strict if Ui
is strictly concave.

Furthermore, ifM is strongly strategy-proof, then we have b̂Si (M′) ≤ b̂Si (M) if Ui is concave,
and the inequality is strict if Ui is strictly concave.

Proposition 14 in the SA characterizes the equilibrium under full complete information, i.e.,
when both the firms’ technological and payoff characteristics (Fi, Ui, Ci), i = 1, . . . , N , and their
strategic/truthful types are common knowledge: in equilibrium, the winning bid is equal to the
second-lowest zero-profit bid among the firms. As a corollary of Proposition 3, we obtain results
on how the equilibrium bid submitted by the contractor is lowered when the buyer switches to a
menu that provides more insurance.

Corollary 4. Assume complete information and consider a menu of contractsM′ providing more
insurance than the menu M. If either all firms are truthful or the menu M is strongly strategy-
proof, then the equilibrium bid is lower underM′ than underM.16

Corollary 4 should be interpreted with caution, because a lower winning bid does not imply
that the buyer is better off. On the one hand, the buyer’s payoff typically depends on the project
chosen by the contractor, and that project may change if the contract is modified. Insurance
could reduce firms’ aversion to riskier projects, thereby inducing a project choice that is more
in line with the risk-neutral buyer’s preference. However, lower bids also reduce the incentive to
select projects with high expected production, as discussed later in Section 4.1. This corresponds
to the moral hazard issue that has already received attention in the literature. In addition, the
project may change because the contractor (the identity of the most competitive firm) changes,
which corresponds to the adverse selection issue. Note, however, that these channels (which do

15We assume here implicitly that for any pair (b, σ) ∈ R× Σ, Ef [T(b,σ)(q)] = Ef [T ′(b,σ)(q)] for any f ∈ σ ≡ {f ∈
F|σ̃(f) = σ}.

16If both menus are manipulable, then we can not rank the zero-profit bids of strategic firms precluding any
general result regarding equilibrium bids.
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not depend on the presence of strategic firms) do not play any role if the sets of optimal projects
fTi (b) are singletons and do not depend on i or b.17 On the other hand, the buyer’s expected
payoff also depends on the contractor’s declaration σ. If the contractor is strategic, then the
buyer’s expected payoff could be lower under M′ than under M. This is the novel channel we
are interested in.

4 Insurance provision based on expected production

Analyzing how providing more insurance opens the door to bid manipulation, and then possibly
to buyer deception requires imposing more structure: In the following, we consider contracts and
menus of contracts that provide more insurance than a linear benchmark, based on a partition
according to expected production.

We call linear all contracts T such that T (q) = λ · q + µ for any q ∈ R+ with µ ∈ R and
λ ∈ R∗+ with the convention that R∗+ = R+ \ {0}. We refer to each specific one of them as the
(λ, µ)-linear contract. For any given set F , the partition based on the expected production is
such that σ̃(f) = σ̃(f ′) if and only if q̄f = q̄f ′ , for any pair (f, f ′) ∈ F2. Formally, we will
study menus of contracts M′ := {T(b,q0)}(b,q0)∈R×R∗+ that provide more insurance than a given
menuM := {Tb}b∈R where Tb is the (λ(b), µ(b))-linear contract.18 In the following, such a menu
M′ will be referred to (for short) as production-insuring and the declaration q0 as the reference
production. It is straightforward that the linear menu M is strategy-proof, since the payoff of
the contractor does not depend on any declaration. On the contrary, under the menu M′, a
strategic firm may benefit from reporting a reference production q0 that differs from its expected
production q̄f (given its project choice f). If a firm reports q0 > q̄f (resp. q0 < q̄f ), then we say
that it overstates (resp. understates) its production.

Linear contracts are commonly used and are thus, from a positive perspective, a natural
benchmark that we want to improve upon when designing production-insuring contracts. In
particular, our class of linear menus include both the cash auctions, if λ(b) is a constant and
µ(b) = b, and the royalty auctions, if λ(b) = b and µ(b) is a constant.19 A procurement game
in which each firm i submits a bid bi, the firm iw with the lowest bid wins the auction and the
(λ, biw)-linear (resp. (biw , µ)-linear) contract applies is hereafter referred to as linear cash (resp.
linear royalty) procurement.

In the next subsection, we argue that linear menus of contracts are also a natural benchmark
17We only need that fTi (b) does not depend on b or i over the set of relevant bids (those that could be equilibrium

bids) and relevant firms (those that could become the contractor in equilibrium).
18Given the monotonicity assumptions we make throughout our analysis about the menus of contracts, the

functions b 7→ λ(b) and b 7→ µ(b) are necessarily non-decreasing.
19We follow here the terminology used in the contingent auction literature (see Skrzypacz (2013) for a survey).
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from a normative perspective, because the linear cash procurement with λ = v (v the social value
per unit of output) satisfies some general optimality properties when bidders are risk neutral.
The optimality of this procurement, hereafter referred to as the Linear Cash Marginal Rewards
(LCMR) procurement, follows intuitively from the fact that it aligns the contractor’s interests
with those of the buyer.

4.1 Optimal procurement under risk neutrality

This subsection is not intended to be a novel contribution, but rather wraps up and adapts to our
setting some insights from the theory of regulation and the theory of auctions when both the buyer
and the firms are risk neutral as assumed throughout this section.20 The objective is to provide a
theoretical status for our subsequent approach, using linear contracts as a benchmark to improve
upon. We also assume full complete information throughout this section. Nevertheless, there is
an analog of our results under incomplete information if we consider second-price mechanisms
instead of a pay-as-bid procurement. Various technical details of the analysis below are relegated
to the SA.

Under the (λ, µ)-linear contract, the buyer’s expected payoff reduces to (v − λ) · q̄f − µ.
Furthermore, under the (v, µ)-linear contract, it is equal to the social welfare up to the additive
constant µ. If a given firm i submits a bid and a reference production that induces a (v, µ)-linear
contract, then it necessarily chooses a project in F∗i . In the LCMR procurement under complete
information, in equilibrium, the contractor is then a socially optimal firm i∗, his equilibrium bid is
equal to −SW ∗−i∗ , and his expected payoff is SW ∗ − SW ∗−i∗ ≥ 0, i.e. equal to his contribution to
welfare. The buyer’s payoff is equal to SW ∗−i∗ , i.e., the social welfare if i∗ were excluded from the
procurement. This design provides marginal rewards to the contractor, which is the key ingredient
to guarantee social optimality as analyzed thoroughly by Hatfield et al. (2018).

Overall, the LCMR procurement implements the socially optimal allocation in our framework,
which involves both moral hazard and adverse selection. When firms are payoff-symmetric, the
LCMR procurement leaves no rents to the contractor and thus maximizes also the buyer’s payoff,
which is then SW ∗. Nevertheless, the optimality of the LCMR procurement in terms of the
buyer’s expected payoff holds more generally with asymmetric firms if we augment the game with
a costly entry stage as in Levin and Smith (1994). Regarding the timing of the game presented
above, it would consist in adding an uncoordinated entry stage between stage 1 and stage 2.
Similarly to Jehiel and Lamy’s (2015) setting with ex ante asymmetric bidders, and as detailed in
the SA (given that Jehiel and Lamy’s (2015) setting does not involve moral hazard), the LCMR
procurement maximizes the buyer’s expected cost among all possible procurement games.

20See Armstrong and Sappington (2007) and Milgrom (2004) for introductions to the theory of regulation and
on auctions, respectively.

17



Departing from marginal rewards is known to open the door to social inefficiencies, either
in the form of moral hazard (Laffont and Tirole (1986) and McAfee and McMillan (1987)) or
adverse selection (Che and Kim, 2010). If a socially optimal firm i∗ submits a given pair of bid
and declaration that induces a (λ, µ)-linear contract with λ > v (resp. λ < v), then it necessarily
chooses a project whose expected production is (weakly) lower (resp. higher) than that of the
socially optimal project f∗.21 Furthermore, another source of inefficiency is that there is no
guarantee that a socially efficient firm will win the procurement. However, small departures from
marginal rewards are expected to lead to small inefficiencies. For example, if we consider a linear
royalty procurement setting a unit price of λ = bw, then the social inefficiency (i.e., the difference
between the equilibrium social welfare and the first best SW ∗) is bounded above by |v − bw| ·K,
where K := maxi∈{1,...,N},f∈Fi q̄f −mini∈{1,...,N},f∈Fi q̄f . In words, linear royalty procurement is
approximately efficient if the equilibrium per-unit payment – the winning bid bw – is set close to
the per-unit social value v.22

Let us summarize our insights in an informal way (see the SA for formal details):

Proposition 5. Assume risk neutrality and complete information. The LCMR procurement is
socially optimal. In a linear royalty procurement, the equilibrium allocation is approximately so-
cially optimal if the equilibrium winning bid is close to v. When firms are payoff-symmetric or if
the set of bidding firms results from an uncoordinated costly entry process, the LCMR procurement
also maximizes the buyer’s expected payoff.

4.2 Characterization of production-insuring contracts

For a given distribution f such that Ef [T (q)] = Ef [λq + µ], the inequality Ef [U(T (q))] ≥
Ef [U(λq + µ)] for any concave function U corresponds to saying that the distribution of T (q)

dominates the distribution of λq + µ according to second-order stochastic dominance (according
to the definition in Mas-Colell, Whinston and Green (1995)). When characterizing the set of
contracts that provide more insurance than the linear contract λq + µ on a given set of distri-
bution F̂ , we are thus interested in characterizing the contracts T such that the distribution of
T (q) dominates the distribution of λq+µ according to second-order stochastic dominance for any
distribution in F̂ .

Whether or not production-insuring contracts exist and, if so, what form they take, depends
21Formally, consider two projects f and f ′, if firm i (weakly) prefers f to f ′ under a (λ, µ)-linear contract (i.e.,

if λ · (q̄f − q̄f ′) ≥ Ci(f) − Ci(f ′)), then it will strictly prefer f to f ′ under the (λ′, µ′)-linear contract either if
λ′ > λ and q̄f > q̄f ′ or if λ′ < λ and q̄f < q̄f ′ . We conclude by noting that the socially optimal project is the most
preferred project for firm i∗ under the (v, µ)-linear contract.

22In contrast, large inefficiencies can arise if the difference |v− bw| is large, which can occur when firms with the
lowest zero-profit bids are those that have very low costs but also provide very low social benefits (Che and Kim,
2010).
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crucially on the set of distributions F over which we want them to provide more insurance than
the linear contract. First, we take for F the full set of atomless distributions whose support is
a compact subset of R+, i.e. the set Fall. We then denote Fall(q0) := {f ∈ Fall | q̄f = q0}, for
any reference production q0 > 0. We show that the set of contracts that provide more insurance
than a given (λ, µ)-linear contract on Fall(q0) corresponds to the linear contracts that intersect
the (λ, µ)-linear contract at q0 but are less steep, i.e., have a slope inferior to λ. Second, we take
for F the symmetric and single-peaked distributions in Fall, i.e. the set Fsym. We then denote
Fsym(q0) := {f ∈ Fsym | q̄f = q0}, for any reference production q0 > 0. We characterize the set
of contracts that provide more insurance than a given linear contract on Fsym(q0).

Proposition 6. A contract T provides more insurance than the (λ, µ)-linear contract (with λ > 0)
on Fall(q0) if and only if it is a (λ′, µ′)-linear contract with 0 < λ′ < λ and µ′ = µ+ (λ− λ′) · q0.

The main steps in the proof of Proposition 6 are as follows: First, the mean-preserving condi-
tion that Ef [T (q)] = λ · q0 +µ for any f ∈ Fall(q0) implies that the contract T must be linear and
that T (q0) = λ · q0 + µ. Conversely, any (λ′, µ′)-linear contract with µ′− µ = (λ− λ′) · q0 satisfies
the mean-preserving condition. Second, from showing that the expected utility Ef [U(λ′ · q + µ′)]

is decreasing in λ′ (thanks to alternative characterizations of second-order stochastic dominance),
we obtain that production-insuring contracts must be flatter (λ′ < λ) to be strictly preferred
under risk aversion.

From Proposition 6 for such a production-insuring contract T we obtain that:

T (q)− [λ · q + µ] = (λ− λ′)︸ ︷︷ ︸
>0

·(q0 − q) (4)

for any realization q. By taking the expectation, we then obtain as a corollary:

Corollary 7. Consider a contract T that provides more insurance than the (λ, µ)-linear contract
on Fall(q0) and take f ∈ Fall the actual production distribution. If q̄f < q0 (resp. q̄f > q0), then
the expected payment by the buyer to the contractor is strictly greater (resp. smaller) under T
than under the (λ, µ)-linear contract.

The requirement to be robust with a completely prior-free approach among the set of dis-
tributions with a given expectation leads to a very narrow set of contracts with the unpleasant
property that the compensation (the difference in payment from the benchmark contract) increase
with q0− q, as reflected in (4): this further implies that the contractor has an obvious incentive to
overstate his expected production. One way to escape this problem might be to impose some con-
straints on the portfolio of possible projects F , i.e. to consider a subset of Fall. In fact, restricting
F to symmetric and single-peaked distributions greatly expands the set of production-insuring
contracts, and provides a micro-foundation for a much more relevant class of contracts.
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Proposition 8. A contract T provides more insurance than the (λ, µ)-linear contract (with λ > 0)
on Fsym(q0) if and only if:

1. T (q) ≥ λ · q + µ for any q ∈ [0, q0],

2. 1
2 · T (q0(1− ε)) + 1

2 · T (q0(1 + ε)) = λ · q0 + µ, for any ε ∈ [0, 1], and

3.
∫ q0
q0(1−ε)[T (q)− (λq + µ)]dq > 0 for any ε ∈ (0, 1].

Condition 1 says that a contract that provides more insurance than the (λ, µ)-linear contract
would never deflate payments for production realizations that are lower than the reference pro-
duction q0. In addition, the contract should satisfy a symmetry property (condition 2) reflecting
that bad and good outcomes should balance each other out so that the contract provides the
same expected revenue as the benchmark: Ef [T (q)] = λ · q0 + µ for any f ∈ Fsym(q0). Note
that this symmetry condition, combined with condition 1, imposes that T (q) ≤ λ · q + µ for any
q ∈ [q0, 2q0].23 Last, condition 3 imposes that the contract should strictly differ from the (λ, µ)-
linear contract in the left neighborhood of the reference production q0, so that the contract that
provides more insurance is strictly preferred by a strictly risk-averse firm, no matter how small
the support of its production distribution.

The next result is the analog of Corollary 7, and is a fundamental step in our analysis of
strategic misreporting (Section 4.3). It analyzes the effect on the buyer’s expected payment to
the contractor when the contract T provides more insurance than a given linear contract on the
set Fsym(q0), and when the actual expected production q̄ differs from the reference production q0.

Proposition 9. Consider a contract T that provides more insurance than the (λ, µ)-linear contract
on Fsym(q0) and take f ∈ Fsym the actual production distribution. If q̄f < q0, the buyer’s expected
payment to the contractor is greater under T than under the (λ, µ)-linear contract. Formally,
Ef [T (q)] ≥ λ · q̄ + µ and the inequality is strict if we also have f ′(q0) < 0. Conversely, if q̄f > q0

and T (q) ≤ λ · q + µ for q ≥ 2 · q0, then the buyer’s expected payment to the contractor is smaller
under T than under the (λ, µ)-linear contract. Formally, Ef [T (q)] ≤ λ · q̄ + µ and the inequality
is strict if we also have f ′(q0) > 0.

Unlike Corollary 7, the proof of Proposition 9 does not result from simple calculus. It relies
on the linear decomposition of the distribution f into two other distributions, denoted by g and
h, such that f = α · g + (1− α) · h with α ∈ [0, 1], and where g ∈ Fsym(q0). This decomposition
is illustrated in Figure 2, where the shaded area corresponds to the mass 1 − α and the white
area below the density f corresponds to the realizations from the distribution g. The fact that

23But, it imposes nothing about payment for realizations greater than twice the reference production, as it should
never occur under truthful reporting.
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Figure 2: Proof of Proposition 9 – Illustration
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g is a symmetric distribution centered on q0 implies that the expected payment with contract T
under the distribution g is exactly equal to the expected payment under the (λ, µ)-linear contract
(i.e., Eg[T (q)] = λ · Eg[q] + µ). The second distribution h has a support that is entirely below
(resp. above) q0 if q̄ < q0 (resp. q̄ > q0) which implies that the payment derived from T under
the distribution h is greater (resp. smaller) than the payment obtained under the linear contract.

4.3 Misreporting and its consequence for the buyer

We now consider production-insuring menus and analyze the equilibrium behavior of strategic
firms faced with them. For both F = Fall and F = Fsym, and when risk aversion is limited, we
establish that firms benefit from overstating their expected production and that it is detrimental
to the buyer.

Consider a menu M := {T(b,q0)}(b,q0)∈R×R∗+ that is production-insuring on Fall against the
menu of linear contracts {λ(b) · q+µ(b)}b∈R. From Proposition 6, there exists a function λ∗(b, q0)

such that T(b,q0)(q) = λ∗(b, q0)·q+µ(b)+(λ(b)−λ∗(b, q0))·q0 with 0 < λ∗(b, q0) < λ(b) for any pair
(b, q0). If a risk-neutral firm chooses project f ∈ Fall, then the difference between its expected
payoff from reporting q0 and from being truthful is (λ(b)−λ∗(b, q0)) · (q0− q̄f ), which implies that
overstating (resp. understating) its production increases (resp. decreases) its expected payoff.
In equilibrium, the optimal decision (b, f, q0) of a strategic risk neutral firm involves overstating
production, i.e., we must have q0 > q̄f , in which case the buyer’s expected payoff is strictly smaller
than (v−λ(b)) · q̄f −µ(b). If we make the additional assumption λ(b) < v, reflecting that both the
buyer and the contractor benefit from higher realizations under the linear contract of reference,24

24If λ(b) > v, then a malicious buyer should sabotage the contractor’s project. The assumption λ(b) < v

21



then the buyer’s expected payoff with a strategic contractor is less than than it would have been
had the contractor chosen a project in Fall(q0): this implies that the buyer always suffers from
deception in equilibrium when the contractor is strategic. These insights also hold for production-
insuring menus on Fsym. The next Theorem summarizes these insights (the more formal version,
which makes some technical assumptions explicit, is relegated to the Appendix).

Theorem 10. Consider a menuM := {T(b,q0)}(b,q0)∈R×R∗+ that is production-insuring relative to
the menu of linear contracts {λ(b) ·q+µ(b)}b∈R∗+ either on F = Fall or on F = Fsym. In the later
case, assume also that T(b,q0)(q) ≤ λ(b) ·q+µ(b) for any pair (b, q0) with q > 2 ·q0. In equilibrium,
if firms are risk neutral (or if firms’ risk aversion is small enough), strategic firms overstate their
production. If the contractor is a strategic firm whose bid b satisfies λ(b) ≤ v, the buyer suffers
from deception.

Theorem 10 formalizes a fundamental conflict between insurance and strategy-proofness. We
stress that firms’ incentives to overestimate their expected production hold for any distribution
in Fall if F = Fall (resp. Fsym if F = Fsym). This general result holds if the contractor is risk
neutral or, by continuity of the maximum (Berge, 1963), if risk aversion is low enough. However,
higher levels of risk aversion may alter (mis)reporting incentives and induce firms to understate
their expected production: in particular (depending on the design of the contract) understating
may be a way of hedging against the worst production outcomes, which may weigh heavily on
the expected utility of a very risk-averse firm.25 From an practical perspective, this channel may
not play a significant role. Nevertheless it prevents us from deriving the overstating insight of
Theorem 10 for any utility function.

Misreporting intensity Theorem 10 is silent on the magnitude of misreporting, which can
intuitively be viewed as a proxy for the flaws resulting from the presence of strategic bidders. Let
us analyze the reference production that maximizes the contractor’s expected payoff for a given
bid b and a given project f ∈ Fsym. To gain further insight, we impose more structure on our
model.

We consider a class of menus of contracts (parameterized by w ∈ [0, 1]) that are production-
insuring relative to the (λ, µ)-linear contract, where for any q0 > 0 the payment is completely
flat within a range of ±w% around the reference production q0, and matches the (λ, µ)-linear
contract outside this range.26 In addition, we assume that the insurance range is large enough to

for relevant bids (i.e., formally, for bids below zero-profit bids) can thus be interpreted as a natural robustness
requirement. An alternative way to guarantee that we always have λ(b) < v for the winning bid would be to
introduce a reserve price above which bids are never accepted.

25If one considers a menu of contracts similar to the one shown in the right panel of Figure 1, understating is a
way to ensure that the lowest realizations fall in the part of T that provides insurance relative to the linear contract
(i.e. where T (q) > λ · q + µ), and not in a part where it is equivalent to the linear contract.

26For the sake of technical simplicity, we have assumed throughout our previous analysis that the production
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fully insure the contractor under truthful reporting (i.e., w is large enough for the support of f
to be included in [(1 − w)q̄, (1 + w)q̄]), and that the PDF f is continuous on R+, and such that
x 7→ 1−F (x)

f(x) is decreasing on the interior of its support.
Under such assumptions, we obtain the following results (the proofs of which are detailed in

the SA): any optimal reference production of a risk-averse (strategic) contractor is above the true
expected production q̄ and below the optimal report of a risk-neutral contractor (the latter does
not depend on (λ, µ). With the additional restriction that the function q 7→ Ui(λq + µ − Ci(f))

is a CRRA utility function, i.e., if we take Ui(x) :=
[
x+Ci(f)−µ

λ
]1−γ

1−γ (γ ≥ 0), we obtain that the set
of optimal reports Argmaxq0>0 {Πi(b, f, q0)} is a singleton. We derive the following comparative
statics about the corresponding optimal report denoted q∗w,f,γ :

1. The lower is the coefficient of relative risk aversion γ, the higher is q∗w,f,γ .

2. Considering two production distributions F1 and F2, where F1 is less risky than F2 in the
sense that f1(q)

(1−F1(q)) ≤
f2(q)

(1−F2(q)) for any q ≤ q̄, then the optimal report q∗w,f,γ is higher
when the contractor faces the least risky distribution F1 than when he faces the most risky
distribution F2.

3. The larger is the insurance range w, the higher is q∗w,f,γ if γ ≥ 1.

5 Analysis of the buyer’s expected cost without moral hazard

In this section, we characterize how the manipulability of production-insuring contracts affects
the buyer’s expected cost in equilibrium. To obtain clear-cut results, we abstract from the fact
that the project chosen by the contractor may change when the menu of contracts changes. Thus,
we focus on the potential misallocation of the contract and on the rents captured by the winning
firm.

Formally, we consider environments where all firms have access to a unique common project
f (Fi = {f} for each i), and we use the notation ci ≡ Ci(f) for firm i’s cost. We also assume that
firms have the same utility function U . As before, we consider a pay-as-bid lowest-price auction.
In such a setting, maximizing the buyer’s expected payoff is equivalent to minimizing the buyer’s
expected cost. We analyze the consequences of switching from a given strongly strategy-proof
menu of contracts M := {T(b,σ)}(b,σ)∈R×Σ to a menu of contracts M′ := {T ′(b,σ)}(b,σ)∈R×Σ that
provides more insurance thanM on a set F ⊇ {f}.

The analysis below relies solely on the assumption that the production-insuring menu M′ is
manipulable for any firm and any bid. In particular, as formalized in Theorem 10, this is verified

contracts are (strictly) increasing. This difference is actually innocuous.
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when we take Fsym for the set F over whichM′ provides more insurance, the partition based on
expected production for Σ, a linear menu of contracts {λ(b) · q + µ(b)}b∈R for the benchmarkM,
and when firms are risk neutral or little risk averse.

We first consider a setting with full complete information where we allow firms to have asym-
metric costs. Then we consider a payoff-symmetric setting with incomplete information about
whether each firm is strategic or truthful.

5.1 Complete information

Let us rank the costs of the N firms such that c1 ≤ c2 ≤ · · · ≤ cN . A socially efficient firm is
one whose cost equals c1. Under the strongly strategy-proof menuM, the zero-profit bid of firm
i, which does not depend on its truthful/strategic type and is denoted by b̂i(M), is characterized
by

Ef [U(T
(̂bi(M),σ̃(f))

(q)− ci)] = 0 (5)

Since the function b 7→ T(b,σ̃(f))(q) is increasing in b, it follows from (5) that b̂1(M) ≤ · · · ≤
b̂N (M). We obtain that a socially efficient firm becomes the contractor and his equilibrium bid
is the zero-profit bid of the second most efficient firm b̂2(M). From Jensen’s inequality we have
Ef [T

(̂b2(M),σ̃(f))
(q)] ≥ c2, where the inequality is strict if U is strictly concave, and stands as an

equality if U is linear. Therefore, the buyer’s expected cost is equal to c2 under risk neutrality
and greater than c2 under risk aversion.

Under the production-insuring menu M′, a firm’s zero-profit bid depends on whether it is
truthful or strategic. If firm i is truthful, then its zero-profit bid b̂Ti (M′) is characterized in
a similar way as in (5), and we have b̂T1 (M′) ≤ · · · ≤ b̂TN (M′). If all firms are truthful, then
the equilibrium bid is b̂T2 (M′). From Proposition 3 we know that b̂T2 (M′) ≤ b̂2(M), which in
turn implies that the buyer’s expected cost would be lower with M′ than with M. Formally,
Ef [T ′

(̂b2(M′),σ̃(f))
(q)] ≤ Ef [T ′

(̂b2(M),σ̃(f))
(q)] = Ef [T

(̂b2(M),σ̃(f))
(q)], where the latter equation corre-

sponds to the mean-preserving condition betweenM andM′.
If firm i is strategic, its zero-profit bid b̂Si (M′) is characterized by

ΠS
i (̂bSi (M′)) = max

σ∈Σ
Ef [U(T

(̂bSi (M′),σ)
(q)− ci)] = 0 (6)

Again, the cost ranking translates directly into the ranking of zero-profit bids: b̂S1 (M′) ≤ · · · ≤
b̂SN (M′). The manipulation assumption regarding the menuM′ implies that, for a given firm i, its
zero-profit bid is strictly smaller if it is strategic than if it is truthful b̂Si (M′) < b̂Ti (M′). Neverthe-
less, lower equilibrium bids under the production-insuring menuM′ do not necessarily translate
into lower buyer’s expected cost, since Ef [T ′

(̂b2(M),σ)
(q)] can be greater than Ef [T

(̂b2(M),σ̃(f))
(q)]
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when σ 6= σ̃(f).
Under risk neutrality, the buyer’s expected cost equals the contractor’s surplus minus social

welfare. If some firms are strategic while others are truthful,27 switching to a menu that suffers
from manipulability affects the buyer’s expected cost through social welfare and through the
rent captured by the winning firm. On the one hand, switching from the strongly strategy-proof
menu M to the menu M′ reduces social welfare if the identity of the winning firm changes,
namely if a strategic inefficient firm is able to outbid the truthful most efficient firm. On the
other hand, it could change the contractor’s surplus: e.g. increase it if the most efficient firm
is the unique strategic firm, or decrease it if the truthful most efficient firm faces a strategic
competitor. Therefore, the overall effect on the buyer’s expected cost is indeterminate. Proposition
11 establishes that this depends critically on the strategic/truthful type of the firm that becomes
the contractor.

Proposition 11. Assume full complete information and that all firms are risk neutral. Under a
strongly strategy-proof menuM, the buyer’s expected cost is equal to the second lowest cost c2 and
the contractor, which is a socially efficient firm, makes the surplus c1− c2. Then consider a menu
M′ that is manipulable for any firm and any bid. The buyer’s expected cost underM′ depends on
whether the firm that becomes the contractor is truthful or strategic:

• If the contractor is a strategic firm, then the buyer’s expected cost is (weakly) larger than
c2. The inequality is strict if the contractor is the unique strategic firm, and stands as an
equality if all firms are strategic.

• If the contractor is a truthful firm, then the contractor is necessarily a socially efficient firm
and the buyer’s expected cost is (weakly) smaller than c2. The inequality is strict if the
contractor is the unique truthful firm, and stands as an equality if all firms are truthful.

Note that whether the contractor is a strategic or truthful firm is endogenous. If the most
efficient firm is strategic, then the contractor must be a socially efficient firm. If it is truthful, it
may or may not be outbid by a strategic competitor, depending on their respective costs.

Consider the case where firms’ costs are homogeneous (ci = c for each i) and firms are risk-
neutral. Then, the contractor is truthful only if all firms are truthful, and the buyer’s expected cost
is equal to c. If several firms are strategic, they compete away the extra payoff from misreporting
by submitting lower bids, and the buyer’s expected cost is also c. The only case where the buyer’s
expected cost is strictly greater than c is when there is a single strategic bidder. Then, the

27When instead firms are risk-averse, the buyer’s expected cost is affected through the risk premium even if firms
are all strategic or all truthful.
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equilibrium bid under the manipulable menu M′ is equal to b̂T (M′), and the buyer’s expected
cost is equal to

c+ max
σ∈Σ

Ef [T
(̂bT (M),σ)

(q)− T
(̂bT (M),σ̃(f))

(q)]︸ ︷︷ ︸
:=∆

. (7)

In other words, the strategic firm captures the surplus ∆ = ΠS (̂bT (M′))−ΠT (̂bT (M′)) > 0, which
is strictly positive given our manipulability assumption.

Overall, under risk neutrality, production-insuring menus are only beneficial if strategic firms
are sufficiently inefficient that the comparative advantage of strategic reporting is insufficient to
offset the cost disadvantage.28

Under risk aversion, there is a third effect at work when comparing the buyer’s expected cost
under M and under M′: the corresponding equilibrium bids are also driven by risk premiums.
As a result of the insurance provision, the zero-profit bids of truthful firms are strictly lower
underM′ than underM. The zero-profit bids of strategic firms are pushed even lower, but the
overall effect on the buyer’s expected cost may be deceptive: in this case, a lower bid does not
necessarily reflect lower risk premiums, but rather the ability of strategic firms to increase their
expected payoffs thanks to a false declaration σ 6= σ̃(f). While the effect on the risk premium may
not be zero, whether it increases or decreases relative to the risk premium under M is actually
undetermined.

If the contractor is a truthful firm, a strictly lower equilibrium under M′ than under M
implies that the buyer’s expected cost is strictly lower under M′ than under M (similar to
Proposition 11). On the contrary, if the contractor is a strategic firm, the overall effect on the
buyer’s cost is ambiguous, because of the ambiguous effect on the risk premium and of the rent
that a strategic contractor might capture. For example, if the firms are payoff-symmetric and
there is a single strategic firm, then the equilibrium bid under M′ is b̂T (M′), with b̂T (M′) <
b̂(M) (Proposition 3). However, the buyer’s expected cost is Ef [T

(̂bT (M′),σ∗)(q)], where σ∗ ∈
Argmaxσ∈Σ Ef [U(T

(̂bT (M′),σ)
(q)− c)], whose ranking relative to the buyer’s expected cost under

M, Ef [T
(̂bT (M),σ̃(f))

(q)], is ambiguous. Thus, under risk aversion, it is an empirical question
whether the negative consequences of misreporting dominate the benefits of insurance. This
question is illustrated in Section 6.

28The possible pro-competitive effect of having a subset of bidders who are strategic is reminiscent of the literature
on corruption, and in particular of Burguet and Che (2004), where bid manipulations could sometimes be a way
to reduce the contractor’s rents. In an incomplete information model of the first-price auction with favoritism,
Burguet and Perry (2007) surprisingly show that the manipulation is beneficial to the buyer when the dishonest
bidder is a strong bidder.
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5.2 Incomplete information with symmetric firms

Consider a similar setting with homogeneous costs, but where we consider incomplete informa-
tion regarding the strategic/truthful status, which is now the firms’ private information. When
strategic/truthful types are i.i.d., we can adapt and extend Maskin and Riley’s (1985) analysis
of the first-price auction with binary types, and characterize the equilibrium in our contingent
auction setting with a menu M′ that is manipulable for any bid. In equilibrium, truthful firms
bid their zero-profit bid b̂T (M′), while strategic firms adopt a mixed strategy where the support
of their bid distribution is [b, b̂T (M′)], where the lower bound b is strictly larger than the strategic
firms’ zero-profit bid b̂S(M′). Thus, the strategic firms capture some surplus. The corresponding
equilibrium analysis is detailed in the SA in a more general environment with moral hazard. The
next proposition characterizes the buyer’s expected cost under risk neutrality.

Proposition 12. Assume that firms have homogeneous costs c and are risk neutral. Suppose that
each firm is strategic with probability α ∈ [0, 1] independently of each other. Consider a menuM′

that is manipulable for any bid. In equilibrium, the buyer’s expected cost is equal to

c+N · α(1− α)N−1∆ (8)

where ∆ = ΠS (̂bT (M′))−ΠT (̂bT (M′)) > 0.

Note that N · α(1 − α)N−1 is the probability of having a single strategic firm. This term is
thus less than one and is actually highest (for a given number of firms N) when α = 1

N , in which
case the term stands between 0.36 and 0.5.29 We thus obtain that the buyer’s expected cost is
lower than in the case with a single strategic firm and complete information. The worst case in
this incomplete information setting is when α = 1

N and N = 2, in which case the buyer’s cost
increase due to misreporting is halved compared to the complete information case with a single
strategic firm.

Under risk aversion, the rent captured by strategic firms under the production-insuring menu
M may be offset by the benefits of reduced risk premiums, in particular when the contractor is a
truthful firm, which occurs with probability (1− α)N . The overall effect is again ambiguous and
an empirical question.

29Formally, the function x 7→ ( x
1+x

)x is decreasing for x ≥ 1, is equal to 0.5 for x = 1 and converges to e−1 when
x goes to infinity.
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6 Simulations calibrated on French offshore wind procurement

In 2011 and 2013, the French government conducted auctions to allocate sites and long-term
contracts for offshore wind projects with a combined capacity of approximately 3 GW. These
long-term contracts, commonly referred to in the industry as feed-in tariffs, provided for a yearly
payment to the operator based on the amount of electricity produced by the wind farm and the
bid placed in the auction. This bid would be approximately equivalent to the unit price of the
contract, with the exception that in these auctions the French government departed from the
standard linear royalty menu setting in which the payment would be Tb(q) = b · q. Instead, they
chose to adopt a more sophisticated menu of contracts, where the payment Tb,q0(q) also depends on
a “reference production” q0 reported by the candidates in the auction process. The aforementioned
contracts are depicted by the solid line in Figure 3. Their precise expression is provided in the
SA. Upon applying Proposition 8, it can be seen that this menu of non-linear contracts provides
more insurance than the linear royalty menu {b · q}b>0 on the set Fsym.

We calibrate our model on 5 of these offshore wind auctions, considering a setting without
moral hazard and with payoff-symmetric firms. However, there are some minor differences between
the calibrated model and our static theoretical framework. The contract lasts 20 years, with the
contractor aiming to maximize his expected discounted profit, where costs involve both a fixed
investment cost occurring before production and fixed operating costs occurring each year. The
primitives of our model are the production distribution, which depends on the location and is
thus auction-specific; the investment and operating costs; firms’ risk aversion, which is captured
through the CRRA utility function U(x) = x1−γ

1−γ ; and the annual discount rate. The calibration

yearly production q

yearly payment
Tb,q0(q)

0.8q0 0.9q0 q0 1.1q0 1.2q0

b · 0.8q0

b · 0.9q0

b · q0

b · 1.1q0

b · 1.2q0

Figure 3: Contract design used in French offshore wind auctions
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Figure 4: Distribution of the firm’s discounted revenue (Courseulles wind farm)
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choices are described in the SA. Note that the yearly production distributions obtained from wind
turbine models (Staffell and Pfenninger, 2016) are not (strictly speaking) symmetric, but the
asymmetry is limited. The only parameter that is varied is the coefficient of relative risk aversion
of the firms γ ≥ 0. In the results presented hereafter, all ranges correspond to the smallest and
largest results obtained among the five procurement auctions.

Figure 4 depicts the PDF of the discounted revenue raised over the duration of the contract
(20 years) for the wind farm project located in Courseulles (Normandy) and the corresponding
observed winning bid. Three different scenarios are considered: payments under the linear con-
tract and under the French contract, where in the latter the contractor either truthfully reported
its actual expected production, or strategically reported the reference production that maximizes
his expected revenue. When firms truthfully report their expected production, we observe (as
expected) that the revenue distribution is less spread out under the French contract than under
the linear contract. However, by strategically overestimating their expected production while
submitting the same price bid, firms could benefit from a significant upward shift in their revenue
distribution. We estimate that risk-neutral firms’ optimal report is a reference production that
is 11.9 to 12.5% greater than their actual expected production. As a result, they increase their
expected revenue by 3.2 to 3.6% (compared to truthful reporting with the same price bid). Nev-
ertheless, by doing so, they also increase the standard deviation of their revenue distribution by
72 to 85% in comparison to truthful reporting, which ends up being 10 to 13% greater than the
standard deviation under the linear contract. In sum, the French contract, which was presumably
designed to insure firms against production risk, may in fact increase this risk.
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Figure 5: Buyer’s expected cost per unit of output (Courseulles wind farm)
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To pursue a comparison between the French menu of contracts and the linear royalty menu,
it is also necessary to account for the effect of the contract design and firms’ strategic or truthful
behavior on equilibrium bids. Figure 5 depicts the buyer’s expected cost in equilibrium as a
function of γ under the linear royalty menu of contracts and under the French menu of contracts,
first where all firms are truthful and then where all firms are strategic. It is based on the same
wind farm as Figure 4, located in Courseulles. Our estimates for the risk premiums under the
linear royalty contract are notably small: for γ = 1 they are comprised between 0.29 − 0.36%,
and fluctuate in the range 0.89− 1.1% for γ = 3. Thanks to the French contract design, this risk
premium is reduced by a bit more than half when all firms are truthful. However, these (limited)
gains are entirely lost when all firms are strategic and this for any reasonable level of risk aversion:
for any γ < 6, the linear royalty menu actually outperforms the French production-insuring menu
in terms of expected cost for the buyer (see Figure 5).

Furthermore, if only one firm were strategic and used strategic reporting to reap out a positive
rent, the buyer’s expected cost would increase by 3.3 − 3.6% relative to the linear royalty menu
when firms are risk neutral, and by 2.6−2.9% when firms’ risk aversion is up to γ = 3. For γ = 1,
this increase is more than 15 times the potential cost reduction in the most favorable case where
all firms are truthful.

7 Discussion and extensions

Variable costs In some applications, in particular in procurement for infrastructure projects
as in Bolotnyy and Vasserman (2023), ex post risk involves variable costs. Suppose that actual
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production q leads to the variable cost C̃(q) for the contractor (with the normalization C̃(q) = 0),
in addition to the fixed cost associated with the project’s choice. Our analysis can be adapted
straightforwardly to this framework if we assume that these variable costs are observable ex post:
according to our notation, it would consist in replacing the contract T(b,q0)(q) by T(b,q0)(q) +

C̃(q). In this more general environment, the analog of the (λ, µ)-linear contracts consists first of
reimbursing the observable variable costs C̃(q) and then adding to this the transfer λ · q + µ. In
particular, if the variable cost function C̃ is linear, then the analog of a linear royalty procurement
remains a linear royalty procurement. From this point of view, departing from the unit price
contracts commonly used in procurement for infrastructure projects – as discussed in Section 8 –
to hedge against ex post risk would raise the same kind of issues.

Costly manipulation Our model can be viewed as one where the cost of falsification is binary,
either zero for strategic firms or infinity for truthful firms. In practice, inflating the reference
production involves typically some costs (because firms need either to produce a fake justification
for it, or to corrupt the agent in charge of the technical evaluation of the project). Following
Maggi and Rodriguez-Clare (1995),30 let us briefly consider a simple model where the falsification
cost is a smooth increasing function of the magnitude of the absolute difference between the
reported reference production and the (true) expected production q̄. Under risk neutrality, then
it is straightforward given Theorem 10 that the optimal report with such falsification costs would
lie somewhere between q̄ and the optimal report without falsification costs. From this perspective,
our results in Section 5 provide a kind of upper bound to how misreporting is prone to increase the
buyer’s expected cost. Nevertheless, falsification is also a wasteful activity such that increasing
falsification costs is not necessary beneficial from a welfare perspective.

Alternative winner-determination rules We have considered procurement games where
the winner-determination rule does not depend on firms’ declarations on their project character-
istics. Under a production-insuring menu based on expected production, the buyer’s expected
payoff associated with firm’s i bid bi and reference production qi is equal to (v−λ(bi)) · q0−µ(bi)

if firm i is truthful. If all firms were truthful, it would thus be optimal ex post to select the
winner among the set Argmaxi=1,...,N (v − λ(bi)) · qi − µ(bi).31 If λ(b) < v for any possible equi-
librium bid b, then it suggests that the buyer should use a winner-determination rule where the
winning probability of a bidder increases with its reference production (e.g. through a scoring
rule that combine both the bid and the declaration). However, it is straightforward that such

30Costly misrepresentation has received attention in models in line with the cheap talk literature (see e.g. Kartik
(2009) and Deneckere and Severinov (2022))

31It seems here that ex post optimal auctions must rely on winner-determination rules that do not solely depend
on firms’ bid but also on their declarations. However, there is no conflict with the general optimality properties of
the LCMR auction presented in Section 4.1 insofar as we always have λ(bi) = v in the LCMR auction.

31



rules would provide bidders an additional incentive to overstate their reference production, which
would reinforce Theorem 10 and its adverse consequences.

The analysis in Section 5 is devoted to the lowest-price procurement auction. When some
characteristics of a good or service are non-contractible, it is well-known that price competition can
select the worst suppliers. E.g., cheap suppliers can be associated with higher risk of bankruptcy
(Zheng, 2001), with time delays or with cost overruns (Decarolis, 2014). This is the reason why
in many procurement, the buyer still leaves herself the choice to disqualify unreasonably low bids
(Bajari, Houghton and Tadelis, 2014). More generally, departures from lowest-price auctions are
popular in procurement for road construction and maintenance contracts (Decarolis, 2018): many
winner-determination rules are in the vein of the average bid auction (ABA) where the winning
bid is the one that is closest to the average of all the submitted bids. If there are some non-reliable
firms, the idea of the ABA is to reduce the probability to select them.32 The same problem arises
in our setting as well. If firms are payoff-symmetric and if there is a single strategic firm, then
the lowest-price auction select for sure the strategic firm. On the contrary, the ABA supports an
equilibrium with the same equilibrium price as the lowest-price auction but where the strategic
firm is selected with probability 1

N . Nevertheless, the ABA is known to suffer from equilibrium
multiplicity: in our setting, firms could coordinate on an equilibrium bid that is greater than the
zero-profit bid of truthful firms. On the whole, departing from the lowest-price auction could
mitigate the adverse selection problem but can not fully eliminate the problem when the menu of
contracts is manipulable.

8 Related literature

Like Eső and White (2004), we consider an auction setting where bids incorporate risk premi-
ums, but the connection goes no further for various reasons. Eső and White (2004) abstract from
moral hazard and do not consider contingent auctions but rather analyze –and compare– stan-
dard auction formats and how informational rents interact with risk aversion. On the contrary,
informational rents play a minor role in our analysis which is focused on designing risk-sharing
contracts with a prior-free approach. Our work is thus mostly related to the robust mechanism
design and the contingent auction literature as detailed below.

Robust mechanism design Our paper contributes to the literature on mechanism design
that departs from the traditional common knowledge assumptions on the primitives of the model
(e.g. on the distribution of agents’ private signals). According to Carroll’s (2019) classification, our
analysis involves both “robustness to technology and preferences” and “robustness to distribution”.

32Relatedly, Lopomo, Persico and Villa (2023) propose of a class of mechanisms that involve both auction and
lottery features and include both the lowest-price auction and the ABA as extreme cases. In their setting with
adverse selection, Lopomo et al. (2023) establish that the optimal mechanism belongs to this class.
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Our research question is to design and analyze risk-sharing menus of contracts that reduce risk
premiums for a large set of primitives including both the contractor’s risk preferences and cost
function and the distribution of the exogenous risk. Contrastingly, the robust mechanism design
literature typically considers the maximization of the principal’s expected profit33 under the worst
case over a set of possible primitives for the agent(s). For example, Garrett (2014) and Carroll and
Meng (2016) revisit Laffont and Tirole’s (1986) optimal procurement problem with a prior-free
approach regarding the agent’s effort cost function and the distribution of noise, respectively.34

Contingent auctions Our paper contributes to the theoretical literature on contingent auc-
tions as surveyed by Skrzypacz (2013). In contrast to the literature supporting the VCG mecha-
nism as mentioned earlier, a mechanism which corresponds actually to a peculiar cash-only auction
in our setting, Hansen (1985) argues that royalty auctions leave lower informational rents to the
winning bidder compared to cash-only auctions.35 Abhishek, Hajek and Williams (2015) con-
sider a model with risk-averse bidders and argue that royalties are beneficial not only because
they reduce informational rents but also because they provide more insurance and thus reduce
risk-premiums.

The empirical literature on auctions and procurement is also taking a growing interest in
auctions involving risk-sharing contracts. Bhattacharya, Ordin and Roberts (2022) estimate the
optimal royalty rate in auctions for oil tract contracts through a structural model that includes
drilling decisions. In procurement for transport infrastructure projects, Bolotnyy and Vasserman
(2023) question the relative performance of Fixed Price (FP) contracts – where the contractor
bears all the cost overruns – versus unit-price (UP) contracts that specify a percentage of the
observable costs that accrue to the buyer. According to their estimates, switching to a FP contract
would more than double public spending compared to a UP scaling auction where contractors are
partially insured against cost overruns.

An original aspect of our analysis is that we consider that the contractor may manipulate the buyer
such that risk-sharing contracts may open the door to “manipulative rents” and/or inefficiencies as in the
literature on bid manipulation/gaming where some bidders may not bid according to the “spirit” of the

33Or analogously the minimization of the principal’s expected regret when Bergemann and Schlag (2008) revisit
the standard monopolist pricing problem with a prior-free approach.

34Relatedly, Carroll (2015, 2017) considers models where the principal’s knowledge on the agent’s primitives
suffers from partial uncertainty. Carroll (2015) departs from Bayesian approaches by considering that the principal
does not know the set of technologies available to the agent but still knows that it is a superset of a known set.
Carroll (2017) considers a model with multi-dimensional private signals where the principal knows the marginal
distribution of each signal but adopts a prior-free approach regarding the correlation structure between signals.

35More generally, DeMarzo, Kremer and Skrzypacz (2005) introduce the concept of “steepness”, arguing that
having “steeper” securities reduces informational rents. Nevertheless, in large markets with competing sellers,
Gorbenko and Malenko (2011) argue that cash-only auctions are revenue-maximizing for the seller: reducing
informational rents through royalties would cost the seller through reduced participation.
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auction rules.36,37 The main insight from this literature is that heterogeneity between bidders’ abilities or
opportunities in gaming opens the door to welfare inefficiencies by selecting – instead of the firms with the
lowest cost – the best “manipulators” and/or to non-competitive rents accruing to those manipulators. As
an example, Ryan (2020) considers procurement auctions for coal power plants with a hedging instrument
against the coal future price. The winning bidders are determined through a score combining a bid and
an index of how much the firm wishes to be hedged against coal price variations. Ryan (2020) shows that
some firms prefer not to use the hedging instrument in order to increase their score, having in mind their
ability to renegotiate their contract in case of spikes in the price of coal.38 In this perspective, our strategic
bidders are the analog of the firms who benefit the most from ex post renegotiation in Ryan (2020).

9 Conclusion

We study procurement auctions with ex post risk. In such environments, it is tempting for the buyer
to design risk-sharing contracts. We have formalized a conflict between designing robust production-
insuring rules and designing rules that are immune to false declarations regarding the project chosen by
the contractor: in particular, strategic contractors overstate their expected production in order to increase
their expected payment which induces buyer’s deception. In addition, heterogeneity between bidding firm
regarding their ability to misreport their expected production opens the door to a novel form of rents which
accrues to strategic firms. Our analysis and the associated empirical simulations support the insight that
adopting production-insuring contracts to reduce risk premiums is a risky bet without a proper screening
technology preventing false declarations.

However, the class of production-insuring contracts we have analyzed rely on important restrictions.
On the one hand, to discourage misreporting we may wish to consider contracts where the contractor
gets punished for very low production. Given our characterisation, such punishments are not compatible
with our definition of production-insuring contracts based on expected production. Our companion paper
(Lamy and Leblanc, in preparation) contains a numerical investigation of a parametric class of such rules
which concludes that sticking to linear contracts seems a safe choice. On the other hand, the hedging
instrument is static: it does not use the fact that in some applications, the outcome can be modelled as a
vector of independent draws from a common distribution. As argued in Thomas and Worrall (1990) with

36It resonates with bid skewing in scaling auctions where the score of a bid is computed based on ex ante
estimates but where payments depend on ex post realizations. If bidders receive, ex ante, information about actual
quantities, then they will benefit from skewing their bids (Athey and Levin, 2001). In a related manner, Agarwal,
Athey and Yang (2009) discuss such incentives and mention other manipulations in sponsored search auctions for
online advertising.

37Cabrales, Calvó-Armengol and Jackson (2003) analyze opportunistic misreporting behavior in a mutual insur-
ance scheme used in Andorra where households are invited to freely report the private monetary value they assign
to their property. Some aspects of their analysis resonate with our analysis, e.g. the fact that the allocation of
risk is efficient provided that households are truthful while strategic misreporting coupled with asymmetries induce
inefficiencies. Nevertheless, the connection goes no further. It is notable that misreporting incentives do not always
plead for over-reporting in their setting: the incentives depend on the relative wealth of the households.

38A related bid manipulation issue is when the procurement adjudicator is corrupted and could deliberately
misevaluate some bids in exchange for a bribe. See, e.g., Celentani and Ganuza (2002), Burguet and Che (2004)
and Compte, Lambert-Mogiliansky and Verdier (2005).
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a repeated principal-agent setting with i.i.d. shocks, efficient risk sharing relies on dynamic contracts and
repeated interactions allow asymmetric information to be reduced.39 Relaxing these restrictions could be
an interesting avenue for further research.
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Appendix: Main proofs

A Proof of Proposition 3

Case 1: truthful firms
Consider a risk-averse firm i, i.e. such that Ui is concave. Consider the zero-profit bid b̂Ti (M)

under the menu M. Then we have ΠT
i (̂bTi (M);M) = 0 and there exists f∗ ∈ Fi such that

Πi(̂b
T
i (M), f∗, σ̃(f∗);M) = Ef∗ [Ui(T(̂bTi (M),σ̃(f∗))

(q)− Ci(f∗))] = 0.
Define the function Ūi by Ūi(x) := Ui(x−Ci(f∗)) for any x ∈ R. Note that the concavity/strict

concavity properties of Ui carry over to Ūi. We then have Ef∗ [Ūi(T(̂bTi (M),σ̃(f∗))
(q))] = 0. From

Definition 1, if the menu of contractsM′ provides more insurance than the menuM, then we have
Ef∗ [Ūi(T ′(̂bTi (M),σ̃(f∗))

(q))] ≥ 0 and the inequality is strict if Ūi is strictly concave (or equivalently

if Ui is strictly concave). The inequality Ef∗ [Ūi(T ′(̂bTi (M),σ̃(f∗))
(q))] ≥ 0 (resp. > 0) implies that

ΠT
i (̂bTi (M);M′) ≥ 0 (resp. > 0). Note that from the definition of zero-profit bids, we have

ΠT
i (̂bTi (M′);M′) = 0 and that the function b 7→ ΠT

i (b;M′) is (strictly) increasing. Thus, we
obtain that b̂Ti (M′) ≤ b̂Ti (M) and that the inequality is strict if firm i is strictly risk averse.

The proof is analogous for strategic firms and we give it below for completeness.
Case 2: strategic firms
Here, the additional premise is that the menuM is strongly strategy-proof. Consider a risk-

averse firm i, i.e. such that Ui is concave. Consider the zero-profit bid b̂Si (M) under the menuM.
Then we have ΠS

i (̂bSi (M);M) = 0 and since M is strongly strategy-proof, there exists f∗ ∈ Fi
such that Πi(̂b

S
i (M), f∗, σ̃(f∗);M) = Ef∗ [Ui(T(̂bSi (M),σ̃(f∗))

(q)− Ci(f∗))] = 0.
Define the function Ūi by Ūi(x) := Ui(x−Ci(f∗)) for any x ∈ R. Note that the concavity/strict

concavity properties of Ui carry over to Ūi. We then have Ef∗ [Ūi(T(̂bSi (M),σ̃(f∗))
(q))] = 0. From

Definition 1, if the menu of contractsM′ provides more insurance than the menuM, then we have
Ef∗ [Ūi(T ′(̂bSi (M),σ̃(f∗))

(q))] ≥ 0 and the inequality is strict if Ūi is strictly concave (or equivalently

if Ui is strictly concave). The inequality Ef∗ [Ūi(T ′(̂bSi (M),σ̃(f∗))
(q))] ≥ 0 (resp. > 0) implies

that ΠT
i (̂bSi (M);M′) ≥ 0 (resp. > 0). Note also that ΠS

i (b;M′) ≥ ΠT
i (b;M′) for any bid b,

reflecting that firms can further increase their expected payoff, e.g. by reporting σ 6= σ̃(f∗). Note
that from the definition of zero-profit bids, we have ΠS

i (̂bSi (M′);M′) = 0 and that the function
b 7→ ΠS

i (b;M′) is (strictly) increasing. So we get that b̂Si (M′) ≤ b̂Si (M) and the inequality is
strict if the firm i is strictly risk-averse.
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B Proof of Proposition 6

"If" part – Suppose q is distributed according to f ∈ Fall(q0). Let hλ (resp. hλ′) denote the
distribution of the variable λq+µ (resp. λ′q+µ+ (λ−λ′) · q0). Note that Ex∼hλ [x] = λ · q0 +µ =

Ex∼hλ′ [x], which satisfies the mean-preserving condition Eq∼f [λ′q+µ+ (λ−λ′) · q0] = λ · q0 +µ =

Eq∼f [λq + µ].
We show below, assuming 0 < λ′ < λ, that the distribution Hλ′ exhibits second-order stochas-

tic dominance over Hλ, i.e., that for all x ∈ R∫ x

−∞
Hλ′(u)du ≤

∫ x

−∞
Hλ(u)du (9)

where the inequality holds strictly over some part of the range. We then obtain as a corollary
of second-order stochastic dominance that for any concave utility function U , Ex∼hλ′ [U(x)] ≥
Ex∼hλ [U(x)] or equivalently Eq∼f [U(λ′q+µ+(λ−λ′)·q0)] ≥ Eq∼f [U(λq+µ)] and these inequalities
are strict if U is strictly concave (see e.g., Hirshleifer and Riley (1992) on stochastic dominance).40

On the contrary, note that by symmetry the inequalities are reversed when λ′ > λ: we have
Ef [U(λ′q+µ+ (λ− λ′) · q0)] ≤ Ef [U(λq+µ)], and the inequality is strict if U is strictly concave.
We then obtain that the (λ′, µ+(λ−λ′) ·q0)-linear contract (with λ′ > 0) provides more insurance
than the (λ, µ)-linear contract (with λ > 0) if and only if λ′ < λ.

Proof of second-order stochastic dominance – Note that the definition of the PDFs hλ and hλ′
translates in terms of CDFs into the equalities: Hλ(u) = F (u−µλ ) and Hλ′(u) = F (u−µ−(λ−λ′)·q0

λ′ )

for all u. Note also that the inequalities 0 < λ′ < λ imply that u−µ−(λ−λ′)·q0
λ′ is strictly less (resp.

strictly greater) than u−µ
λ if u < λq0 + µ (resp. u > λq0 + µ). Then we get Hλ′(u) ≤ Hλ(u)

for any u ≤ λq0 + µ, and conversely Hλ′(u) ≥ Hλ(u) for any u ≥ λq0 + µ. Furthermore, these
inequalities are strict if hλ(u) > 0 or hλ′(u) > 0.

If x ≤ λq0 + µ, we then obtain
∫ x
−∞Hλ′(u)du ≤

∫ x
−∞Hλ(u)du and there exists x ≤ λq0 + µ

such that the inequality is strict (for this we can take x = λq + µ with q ≤ q0 such that f(q) > 0

and such a production q exists since q̄f = q0).
Now consider x ≥ λq0 +µ and let x̄ denote the upper bound of the support of the distribution

hλ, which is greater than the upper bound of the distribution hλ′ . We have
∫ x
−∞Hλ′(u)du −∫ x

−∞Hλ(u)du =
∫ x̄
−∞[Hλ′(u)−Hλ(u)]du−

∫ x̄
x [Hλ′(u)−Hλ(u)]du.

Thanks to integration by parts, we have
∫ x̄
−∞[Hλ′(u)−Hλ(u)]du =

∫ x̄
−∞[hλ′(u)−hλ(u)]udu = 0

since the two distributions hλ and hλ′ have the same mean and a support included in ] −∞, x̄].
40There are mild variations in the definitions of “second-order stochastic dominance” in the literature. In line

with Definition 1, Hirshleifer and Riley (1992) adopt a version which guarantees that the inequalities are strict
when the utility function is strictly concave.
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Then we get ∫ x

−∞
Hλ′(u)du−

∫ x

−∞
Hλ(u)du = −

∫ x̄

x
[Hλ′(u)−Hλ(u)]du.

Since Hλ′(u) ≥ Hλ(u) for any u ≥ λq0 + µ, we then conclude that
∫ x
−∞Hλ′(u)du ≤∫ x

−∞Hλ(u)du for any x ≥ λq0+µ. We have thus established the second-order stochastic dominance
condition (9).

"Only if" part – Suppose T provides more insurance than the (λ, µ)-linear contract for any
distribution f ∈ Fall(q0). Let us show that T must be a (λ′, µ′)-linear contract with (λ−λ′) · q0 =

(µ′ − µ) and 0 < λ′ < λ.
Take any pair qL, qH ∈ R∗+ such that qL < q0 < qH , and any ε > 0 sufficiently small so that

qL − ε > 0 and qL + ε < qH − ε. Let us introduce the distribution f(qL,qH ,ε), according to which
q follows a uniform distribution over [qL − ε, qL + ε] with probability qH−q0

qH−qL , or follows a uniform
distribution over [qH − ε, qH + ε] with probability q0−qL

qH−qL . Formally, f(qL,qH ,ε)(q) = 1
2ε ·

qH−q0
qH−qL if

q ∈ [qL − ε, qL + ε], f(qL,qH ,ε)(q) = 1
2ε ·

q0−qL
qH−qL if q ∈ [qH − ε, qH + ε], and is equal to 0 elsewhere.

We have Ef(qL,qH,ε)
[q] = qH−q0

qH−qL · qL + q0−qL
qH−qL · qH = q0, and therefore f(qL,qH ,ε) ∈ Fall(q0).

The assumption that T provides more insurance than the (λ, µ)-linear contract implies the
mean-preserving condition Ef(qL,qH,ε)

[T (q)] = λq0 + µ for any triplet (qL, qH , ε), or equivalently

(qH − q0) ·
∫ qL+ε

qL−ε

T (q)

2ε
dq + (q0 − qL·)

∫ qH+ε

qH−ε

T (q)

2ε
dq = (qH − qL) · (λq0 + µ).

By taking the derivative of this equality with respect to qH , we get 1
2ε

∫ qL+ε
qL−ε T (q)dq + (q0 −

qL) 1
2ε(T (qH + ε)− T (qH − ε)) = λq0 + µ. Then, taking the derivative of the latter equality with

respect to qL, we get that

T (qL + ε)− T (qL − ε)
2ε

=
T (qH + ε)− T (qH − ε)

2ε
(10)

for all 0 < ε < min{qL, qH−qL2 }.
The function T is continuously increasing and thus differentiable almost everywhere. Consider

q∗L ∈]0, q0[ such that T is differentiable at q∗L. Applying (10) when qL = q∗L and for any qH > q0

and taking the limit when ε → 0, we get that T is differentiable at qH with T ′(qH) = T ′(q∗L).
Similarly, if we fix q∗H > q0 and apply (10) when qL < q0, then we get that T is differentiable at
qL with T ′(qL) = T ′(q∗H) = T ′(q∗L). All in all, we get that T ′ is constant and thus that T is a
linear function on R+.

Now, denoting T (q) = λ′ ·q+µ′, the mean-preserving condition Ef [T (q)] = λ′q0 +µ′ = λq0 +µ,
for any f ∈ Fall(q0), implies that (λ−λ′)·q0 = (µ′−µ). As a by-product of the "If part", we showed
above that the (λ′, µ′)-linear contract would fail to provide more insurance than the (λ, µ)-linear
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contract if λ′ > λ. Finally, we must have 0 < λ′ < λ, which completes the proof.

C Proof of Proposition 8

"If" part – Suppose that q is distributed according to f ∈ Fsym(q0). Let h(λ,µ) (resp. hT )
denote the PDF of the variable λ · q + µ (resp. T (q), where T satisfies the three conditions from
Proposition 8). Note that Ex∼h(λ,µ)

[x] = λ · q0 + µ.
Note that the support of f ∈ Fsym(q0) with expected value q0 is included in [0, 2q0]. Using the

change of variable q = q0(1 + ε) and the second condition (i.e. 1
2 ·T (q0(1− ε)) + 1

2 ·T (q0(1 + ε)) =

λ · q0 + µ, for any ε ∈ [0, 1]) for any ε ∈ [0, 1], we obtain the following calculation:

Ex∼hT [x] = Ef [T (q)] =

∫ 2q0

0
T (q)f(q)dq

= q0

∫ 1

−1
T (q0 · (1 + ε))f(q0 · (1 + ε))dε

= q0

∫ 1

0
[T (q0 · (1 + ε)) + T (q0 · (1− ε))] f(q0(1 + ε))dε

= q0

∫ 1

0
2(λ · q0 + µ) · f(q0(1 + ε))dε

= (λ · q0 + µ) ·
∫ 2q0

0
f(q)dq︸ ︷︷ ︸

=1

= λ · q0 + µ.

We thus obtain that Ex∼h(λ,µ)
[x] = Ex∼hT [x], i.e. that T satisfies the the mean-preserving property

Ef [λq + µ] = Ef [T (q)].

We show below that the distribution HT exhibits second-order stochastic dominance over
H(λ,µ), i.e., that for all x ∫ x

−∞
HT (u)du ≤

∫ x

−∞
H(λ,µ)(u)du. (11)

where the inequality holds strictly over some part of the range (namely, the neighborhood of q0).
We obtain then as a corollary of second-order stochastic dominance that for any concave utility
function U , Ex∼hT [U(x)] ≥ Ex∼h(λ,µ)

[U(x)] or equivalently Ef [U(T (q))] ≥ Ef [U(λq+µ)] and these
inequalities are strict if U is strictly concave. We obtain then that the contract T provides more
insurance than the (λ, µ)-linear contract (with λ > 0).

Proof of second-order stochastic dominance – Note that the first condition T (q) ≥ λ · q + µ

for any q ≤ q0 implies that HT (x) ≤ H(λ,µ)(x) for any x ≤ λq0 + µ. Note that HT (λq0 + µ) =
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H(λ,µ)(λq0 + µ) = 1
2 . From the third condition (

∫ q0
q0(1−ε)[T (q)− (λq + µ)]dq > 0 for any ε ∈ (0, 1])

we obtain that HT (x) < H(λ,µ)(x) for x in the left neighborhood of λq0 + µ. If x ≤ λq0 + µ, we
obtain then

∫ x
−∞HT (u)du ≤

∫ x
−∞H(λ,µ)(u)du and the inequality is strict in the left neighborhood

of λq0 + µ.
Consider now x ≥ λq0 +µ and let x̄ denote the upper bound of the support of the distribution

h(λ,µ), which is greater than the upper bound of the distribution hT . We have
∫ x
−∞HT (u)du −∫ x

−∞H(λ,µ)(u)du =
∫ x̄
−∞[HT (u)−H(λ,µ)(u)]du−

∫ x̄
x [HT (u)−H(λ,µ)(u)]du.

By integration by parts, we obtain
∫ x̄
−∞[HT (u)−H(λ,µ)(u)]du =

∫ x̄
−∞ u[hT (u)−h(λ,µ)(u)]du =

Ex∼hT [x]− Ex∼h(λ,µ)
[x] = Ef [T (x)]− Ef [λ · x+ µ] = 0 as shown above given that f ∈ Fsym.

We obtain then that for any x ≥ λ · q0 + µ:∫ x

−∞
HT (u)du−

∫ x

−∞
H(λ,µ)(u)du = −

∫ x̄

x
[HT (u)−H(λ,µ)(u)]du.

Conditions 1 and 2 combined also impose that T (q) ≤ λ·q+µ for any q ≥ q0, which implies that
HT (x) ≥ H(λ,µ)(x) for any x ≥ λq0 + µ. So we conclude that

∫ x
−∞HT (u)du ≤

∫ x
−∞H(λ,µ)(u)du

for any x ≥ λq0 + µ. We have thus established the second-order stochastic dominance condition
(11).

"Only if" part
Suppose that T provides more insurance than the (λ, µ)-linear contract for any distribution f ∈

Fsym(q0). For any ε ∈]0, 1], let f(q0,ε) be the uniform distribution on the interval [q0(1−ε), q0(1+ε)].
We have that f(q0,ε) ∈ Fsym(q0). Formally, f(q0,ε)(q) = 1

2·ε·q0 if q ∈ [q0(1 − ε), q0(1 + ε)] and
f(q0,ε)(q) = 0 elsewhere.

The assumption that T provides more insurance than the (λ, µ)-linear contract implies, for all
ε ∈]0, 1], the mean-preserving condition Ef(q0,ε)

[q] = λ · q0 + µ, or:

∫ q0(1+ε)

q0(1−ε)

T (q)

2 · ε · q0
· dq = λq0 + µ.

By multiplying each side by ε and taking the derivative of this equality with respect to ε, we get

1

2
· T (q0(1− ε)) +

1

2
· T (q0(1 + ε)) = λq0 + µ. (12)

By continuity, the equality holds at the bounds and thus for any ε ∈ [0, 1]. Thus we have shown
condition 2 in Proposition 8.

In order to show that T (q) ≤ λq + µ for any q ∈ [q0, 2q0] or equivalently that T (q0(1 + ε)) ≤
λq0(1 + ε) + µ for any ε ∈ [0, 1], let us proceed by contradiction. Suppose on the contrary that
T (q0(1 + ε)) > λq0(1 + ε) + µ for some ε ∈ [0, 1] and let then δ := inf{ε ∈ [0, 1] | T (q0(1 + ε)) >
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λq0(1 + ε) + µ}. Since T is continuous, we have then δ < 1 and we can also define δ ∈ (δ, 1]

such that T (q0(1 + ε)) > λq0(1 + ε) + µ for any ε ∈]δ, δ[. Since T is continuous, we also have
T (q0(1 + δ)) = λq0(1 + δ) + µ.

Consider then f(q0,δ)
the uniform distribution on [q0(1− δ), q0(1 + δ)]. Consider a continuous

function U such that U(x) = x for x ≤ λq0(1 + δ) + µ and U ′(q) ∈]0, 1[ being strictly decreasing
for q > λq0(1 + δ) + µ.41 Note that U is then increasing and concave.

Given that T is an increasing function and that T (q0(1+δ)) = λq0(1+δ)+µ (which also implies
T (q0(1− δ)) = λq0(1− δ) +µ given (12)), we have that T (q) ∈ [λq0(1− δ) +µ, λq0(1 + δ) +µ] for
any q ∈ [q0(1−δ), q0(1+δ)]. Therefore using that U(x) = x for x ∈ [λq0(1−δ)+µ, λq0(1+δ)+µ],
the symmetry of f(q0,δ)

around q0, and making the change of variable ε = q
q0
−1 in (12) we obtain:

∫ q0(1+δ)

q0(1−δ)
U(T (q))f(q0,δ)

(q)dq =

∫ q0(1+δ)

q0(1−δ)
T (q)F(q0,δ)

(q)dq

= q0 ·
∫ δ

0
[T (q0(1 + ε)) + T (q0(1− ε))]f(q0,δ)

(q0(1 + ε))dε

= 2[λq0 + µ] · [F(q0,δ)
(q0(1 + δ))− 1

2
]

= [λq0 + µ] · [F(q0,δ)
(q0(1 + δ))− F(q0,δ)

(q0(1− δ))]

=

∫ q0(1+δ)

q0(1−δ)
[λq0 + µ]dF(q0,δ)

(q) =

∫ q0(1+δ)

q0(1−δ)
(λq + µ) · dF(q0,δ)

(q)

=

∫ q0(1+δ)

q0(1−δ)
U(λq + µ)dF(q0,δ)

(q).

Note that the first and the last equalities use the assumption that U is linear on [0, q0 · (1+δ)].
We obtain thus that the difference Ef(q0,δ)

[U(λq + µ)]− Ef(q0,δ)
[U(T (q))] resumes to

∫ q0(1−δ)

q0(1−δ)
[U(λq + µ)− U(T (q))]

dq

2δq0

+

∫ q0(1+δ)

q0(1+δ)
[U(λq + µ)− U(T (q))]

dq

2δq0

.

Thanks to the change of variable ε = 1 − q
q0

and ε = q
q0
− 1 in the first and second integrals,

respectively, we obtain:
41How to build a function U satisfying such properties (which will guarantee then its existence) is left to the

reader.
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Ef(q0,δ)
[U(λq + µ)]− Ef(q0,δ)

[U(T (q))] =
1

2δ

∫ δ

δ
[U(λq0(1− ε) + µ)− U(T (q0(1− ε)))]dε

+
1

2δ

∫ δ

δ
[U(λq0(1 + ε) + µ)− U(T (q0(1 + ε)))]dε.

(13)

Let us show below that in the first (resp. second) integral the function U is applied to values
where it is linear (resp. strictly concave). Since the function T is increasing, for any ε ∈ [0, 1]

we have T (q0(1 − ε)) ≤ T (q0) = λ · q0 + µ where the last equality comes from (12)). In the first
integral, the function U is thus applied only for values below q0(1 + δ) + µ where the function U
is defined such that U(x) = x. We have thus that ∀ε ∈ [δ, δ]:

U(λq0(1− ε) + µ)− U(T (q0(1− ε))) = λq0(1− ε) + µ− T (q0(1− ε)). (14)

Since the function T is increasing and T (q0(1 + δ)) = λq0(1 + δ) + µ (from the way we have
defined δ), then for ε ∈ [δ, δ], we have that T (q0(1 + ε)) ≥ T (q0(1 + δ)) = λq0(1 + δ) +µ. Besides,
we note that λq0(1+ ε)+µ ≥ λq0(1+δ)+µ. In the second integral, the function U is thus applied
only for values above λq0(1 + δ) + µ where the function U is strictly concave and with U ′(x) < 1.
We have thus that ∀ε ∈ (δ, δ] where T (q0(1 + ε)) ≥ λq0(1 + ε) + µ:

U(T (q0(1 + ε)))− U(λq0(1 + ε) + µ) ≤ [T (q0(1 + ε))− λq0(1 + ε) + µ] · U ′(λq0(1 + ε) + µ)

< λq0(1 + ε) + µ− T (q0(1 + ε)).
(15)

We obtain thus that

U(λq0(1 + ε) + µ)− U(T (q0(1 + ε))) > λq0(1 + ε) + µ− T (q0(1 + ε)). (16)

Finally, plugging (14) and (16) into (13) and using (12), we obtain:

Ef(q0,δ)
[U(λq + µ)]− Ef(q0,δ)

[U(T (q))] >
1

2δ

∫ δ

δ
[2(λq0 + µ)− T (q0(1− ε))− T (q0(1 + ε))]︸ ︷︷ ︸

=0

dε = 0.

We have thus shown that Ef(q0,δ)
[U(λq+µ)] > Ef(q0,δ)

[U(T (q))], which stands in contradiction
with the production-insuring condition (3). On the whole we have shown that T (q0(1 + ε)) ≤
λq0(1 + ε) + µ for any ε ∈ [0, 1]. From the symmetry condition (12), we obtain T (q0(1 − ε)) ≥
λq0(1− ε) + µ for any ε ∈ [0, 1].

The remaining part of Proposition 8 to be shown is that T (q) − [λq + µ] can not be equal
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(uniformly) to zero in the neighborhood of q0 or equivalently (given that we have shown that
T (q0(1− ε))− [λq0(1− ε) +µ] ≥ 0 for any ε ∈ [0, 1] and that T is continuous) that for all ε ∈]0, 1]

we verify
∫ q0
q0(1−ε)[T (q)− (λq + µ)]dq > 0 for any ε ∈ (0, 1].

Suppose that T (q)− [λq+µ] for any q ∈ [q0(1− ε), q0(1+ ε)] (with ε > 0) and let us establish a
contradiction. Consider a strictly concave payoff function U and the uniform distribution f(q0,ε).
Since T (q) is uniformly equal to λq+µ on the support of f(q0,ε), then we obtain that Ef(q0,ε)

[U(λq)+

µ] = Ef(q0,ε)
[U(T (q))] which stands in contradiction with the production-insuring inequality (3)

which must be strict if U is strictly concave.

D Proof of Proposition 9

Let us establish Proposition 9 for q0 > q̄. This is the case we use for our illustration of the proof
in Figure 2. The proof for q0 < q̄ is analog by symmetry and briefly discussed at the end.

Summary of the arguments: The central point is to decompose f ∈ Fsym(q̄) as f =

α · g + (1 − α) · h where α ∈ [0, 1[ and g and h are two PDFs such that g ∈ Fsym(q0) and the
support of h is included in [0, q0]. The assumption that f is single-peaked plays a key role to
guarantee that h is a PDF. This gives the decompositions:

Ef [q] = q̄ = α · q0 + (1− α) · Eh[q] and Ef [T (q)] = α · Eg[T (q)] + (1− α) · Eh[T (q)] (17)

Since g ∈ Fsym(q0), the assumption that T provides more insurance on Fsym(q0) implies that
Eg[T (q)] = λ · q0 + µ. Since T (q) ≥ λ · q + µ for any q ∈ [0, q0] (Proposition 8) and since the
support of h is included in [0, q0], we obtain that Eh[T (q)] ≥ λ · Eh[q] + µ. From (17), we obtain
then that Ef [T (q)] ≥ λ · [α · q0 + (1− α) · Eh[q]] + µ = λ · Ef [q] + µ.

Furthermore, the additional assumption f ′(q0) < 0 implies that the PDF h has a positive mass
in the left neighborhood of q0 and thanks to Condition 3 in Proposition 8, we obtain then that
Eh[T (q)] > λ · Eh[q] + µ and thus that Ef [T (q)] > λ · Ef [q] + µ.

Detailed arguments Formally, α, g and h are defined in the following way. We let α :=

2 · (1−F (q0)) < 2 · (1−F (q̄)) = 1. If f ′(q0) < 0 (as it is the case in Figure 2), then q0 belongs to
the interior of the support of f and F (q0) < 1 or equivalently α > 0.

If α = 0 or equivalently F (q0) = 1, we let h := f and the support of h is included in [0, q0].
If α > 0, let G : R+ 7→ [0, 1] denote the function defined by:
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for q ≥ q0, G(q) =
1 + F (q)− 2F (q0)

2− 2F (q0)

for q < q0, G(q) = 1− 1 + F (2q0 − q)− 2F (q0)

2− 2F (q0)
.

As a CDF, the function F is non-decreasing, we obtain then that G is non-decreasing on [0, q0[

and on [q0,+∞[. In addition, G is continuous at q0 with G(q0) = 1
2 , and G(q) = 0 if q ≤ 2(q0− q̄),

and G(q) = 1 if q ≥ 2q̄. We obtain then that G is non-decreasing on R+. Note also that G is
differentiable and the derivative, denoted by g, satisfies g(q) = f(q)

α if q ≥ q0 and g(q) = f(2q0−q)
α

if q ≤ q0. We have then g(q0 +x) = g(q0−x) for any x ∈ [0, q0]. Furthermore, the single-peakness
property of f implies that g is non-increasing on [q0, 2q0] and by symmetry g is non-decreasing on
[0, q0]. If q > 2q0, we have q > 2q̄ and then g(q) = f(q)

α = 0. On the whole, we have shown that
g ∈ Fsym(q0).

Let us define the function h : R+ 7→ R by h = f−αg
1−α . Since f(q) = α · g(q) for any q ≥ q0, we

have h(q) = 0 if q ≥ q0. Let H(q) :=
∫ q

0 h(x)dx. Note that H(q0) = H(2q0) = 1
1−α · [F (2q0) −

αG(2q0)] = 1. To conclude that h is a CDF on [0, q0], we need to show in addition that h(q) ≥ 0

for any q ∈ [0, q0]. If q ∈ [0, 2q0−2q̄[, then g(q) = g(2q0−q) where 2q0−q > 2q̄ which implies that
g(2q0−q) = 0. We obtain then that h(q) ≥ 0 if q ∈ [0, 2q0−2q̄[. Consider q ∈ [2q̄−q0, q0]. Since f
(resp. g) is single-peaked and symmetric around its mode q̄ (resp. q0), we have f(q) ≥ f(q0) (resp.
g(q) ≤ g(q0)) for any q ∈ [2q̄ − q0, q0]. We obtain then that h(q) = f(q)−αg(q)

1−α ≥ f(q0)−αg(q0)
1−α = 0.

If 2q0 − 2q̄ > 2q̄ − q0, then we obtain that h(q) ≥ 0 for any q ∈ [0, q0].
Consider now the case where 3q0 > 4q̄ and consider q ∈ [2q0 − 2q̄, 2q̄ − q0]. Since f (resp.

g) is single-peaked and symmetric around its mode q̄ > 2q̄ − q0 (resp. q0 > 2q̄ − q0), we have
f(q) ≥ f(2q0 − 2q̄) (resp. g(q) ≤ g(2q̄ − q0)) for any q ∈ [2q̄ − q0, q0]. In order to show that
h(q) ≥ 0 on [2q0 − 2q̄, 2q̄ − q0], it is then sufficient to show that f(2q0 − 2q̄) ≥ g(2q̄ − q0). Note
that the symmetry properties implies that f(2q0 − 2q̄) = f(3q̄ − 2q0) (f is symmetric around q̄)
and g(2q̄− q0) = g(3q0−2q̄) = f(3q0−2q̄) (g is symmetric around q0 and g(q) = f(q) for q ≥ q0).
Note that f(3q̄ − 2q0) ≥ f(3q0 − 2q̄) because q̄ ≥ 3q̄ − 2q0 > 3q0 − 2q̄. We have thus shown that
h(q) ≥ 0 on [2q0 − 2q̄, 2q̄ − q0].

Let us now use the decomposition f = α · g+ (1−α)h to show that Ef [T (q)] ≥ λ · q̄+µ with a
strict inequality if f ′(q0) < 0. Since the contract T provides more insurance than the (λ, µ)-linear
contract on Fsym(q0), we obtain 1) that Eg[T (q)] = λ · q0 + µ (because g ∈ Fsym(q0)) and 2) that

Eh[T (q)] =

∫ q0

0
T (q)h(q)dq ≥ λ · Eh[q] + µ (18)

(because Condition 1 in Proposition 8 guarantees that T (q) ≥ λ · q̄ + µ if q ∈ [0, q̄]).
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Given the decomposition f = α·g+(1−α), we get Ef [T (q)] = α·Eg[T (q)]+(1−α)·Eh[T (q)] ≥
λ · [αEg[q] + (1 − α)Eh[q]] + µ = λ · q̄ + µ. If f ′(q0) < 0, then we have indeed h(q) > 0 for any
q ∈ [2q̄ − q0, q0[. From condition 3 in Proposition 8, we have

∫ q̄
0 T (q)h(q)dq > λ ·

∫ q̄
0 h(q)dq + µ =

λ ·Eh[q]+µ thanks to the positive mass of the distribution h in the left-neighborhood of q̄. Finally,
we obtain that Ef [T (q)] > λ · q̄ + µ.

The proof for the case q0 < q̄ is analogous. There is however a small twist. In the decomposition
f = αg+ (1−α)h, as above, we have α ∈ [0, 1[, g ∈ Fsym(q0) and the support of the distribution
h is included in [q0, 2q̄] (instead of [0, q0] in the case q0 > q̄). From Proposition 8, we have that
T (q) ≤ λ · q+ µ if q ∈ [q0, 2q0]. Since we also assume that T (q) ≤ λ · q+ µ for q ≥ 2 · q0, the same
logic of the proof applies.

E Proof of Theorem 10

Let us first explain why some technical assumptions need to be introduced to guarantee that
firms’ optimal strategies are well-defined. Consider the production-insuring menu of contracts
T(b,q0)(q) = λ∗(b, q0) · q + µ(b) + (λ(b) − λ∗(b, q0)) · q0 with 0 < λ∗(b, q0) < λ(b). If the func-
tion q0 7→ λ∗(b, q0) does not depend on q0, then let λ∗(b, q0) ≡ λ∗(b). We obtain then that
the expected payoff of a risk neutral contractor as a function of the reference production q0 is
equal to (λ(b) − λ∗(b)) · q0 up to a constant, and is thus increasing in q0 for any given pair
(b, f). In such a case, firms’ optimal strategies are not well-defined (which illustrates the need
for extra technical assumptions as argued in Footnote 9). In order to guarantee that the sets
Q∗i (b) := Argmax(f,q0)∈Fi×{q0∈R+|∃f∈F such that q0=q̄f}Πi(b, f, q0) are well-defined and compact,
we assume in the formal version of Theorem 10 that the sets Fi are finite and we limit our-
selves to a portfolio F of projects whose expectations belongs to an interval [qmin, qmax] with
qmax > qmin > 0.

Theorem 13 (Formal version of Theorem 10). Consider a menuM := {T(b,q0)}(b,q0)∈R×[qmin,qmax]

that is production-insuring on F = {f ∈ Fall|q̄f ∈ [qmin, qmax]} (resp. F = {f ∈ Fsym|q̄f ∈
[qmin, qmax]}) against the menu of linear contracts {λ(b) · q + µ(b)}b∈R.

Suppose that the set Fi ⊆ F is finite for each i and that q̄f < qmax and that f is continuously
differentiable for any f ∈ Fi.

For any firm, any bid and any cost function, the procurement is manipulable if the firm is risk
neutral or if its risk aversion is small enough.

In equilibrium, if firms are risk neutral (or if firms’ risk aversion is small enough), the con-
tractor’s expected production differs from its declaration. If we further assume that T(b,q0)(q) ≤
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λ(b) · q + µ(b) for any pair q, q0 with q > 2q0,42 then strategic firms overstate their production
and the buyer suffers from deception if the contractor is a strategic firm and if its bid b satisfies
λ(b) ≤ v.

Proof of Theorem 13
Case 1: F = {f ∈ Fall|q̄f ∈ [qmin, qmax]} and M := {T(b,q0)}(b,q0)∈R×[qmin,qmax] is

production-insuring on F against the menu of linear contracts {λ(b) · q + µ(b)}b∈R.
Given the production-insuring property, we can write T(b,q0)(q) = λ′(b, q0) · q + µ(b) + (λ(b)−

λ′(b, q0)) · q0 where λ′(b, q0) < λ(b).
For a given firm i, we have thus

Πi(b, f, q0)−Πi(b, f, q̄) =Ef [Ui(λ
′(b, q0) · q + µ(b) + (λ(b)− λ′(b, q0)) · q0)− Ci(f))]

− Ef [Ui(λ
′(b, q̄) · q + µ(b) + (λ(b)− λ′(b, q̄)) · q̄)− Ci(f))].

Which, under risk neutrality, reduces to:

Πi(b, f, q0)−Πi(b, f, q̄) = (λ′(b, q0)− λ(b)) · (q̄ − q0).

We thus have Πi(b, f, q0) > Πi(b, f, q̄) for q̄ < q0, and thus ΠS
i (b) > ΠT

i (b) (where strategic
firms declare some q0 > q̄):43 the procurement is manipulable at b for firm i.

Since Fi is finite and [q̄f , q
max] is compact and q0 7→ Πi(b, f, q0) is continuous, we obtain that

the set Q∗i (b) = Argmax(f,q0)|f∈Fi,q0∈[q̄f ,qmax] Πi(b, f, q0) is a well-defined compact set. Further-
more, for any i and any b, any pair (f, q∗) in Q∗i (b) satisfies q∗ > q̄f . In equilibrium, the decision
(b, f, q∗) of any strategic bidder should thus satisfy the property q∗ > q̄∗f . If the contractor is
strategic and if λ(b) < v which further implies that λ(b, q∗) < v, then the buyer suffers from de-
ception: the buyer’s expected payoff under the contract T(b,q∗) when the contractor chooses project
f is equal to v · q̄f −Ef [λ(b, q∗)q+µ(b) + (λ(b)−λ(b, q∗)) · q∗] = (v−λ(b, q∗)) · q̄f − [λ(b)q∗+µ(b)]

which is smaller than minf ′∈F|q̄f ′=q∗{v · q̄f ′ − Ef ′ [λ(b, q∗)q + µ(b) + (λ(b) − λ(b, q∗)) · q∗]} =

(v− λ(b, q∗)) · q∗− [λ(b) · q∗+ µ(b)], since v− λ(b, q∗) > 0 and q∗ > q̄. This means that the buyer
suffers from deception.

Thanks to Berge’s Maximum Theorem (Berge, 1963), the overestimation result under risk
neutrality extends to risk aversion, provided that risk aversion is small enough. Formally, once
the underlying utility function space is equipped with a proper topology (consider, e.g. that the set

42This extra assumption is indeed always satisfied in the case where F = {f ∈ Fall|q̄f ∈ [qmin, qmax]}. On the
contrary, it is needed when F = {f ∈ Fsym|q̄f ∈ [qmin, qmax]} because the characterization of production-insuring
menus does not impose any constraint on T(b,q0)(q) for q > 2q0.

43We use here that q̄f < qmax for any f ∈ Fi.
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of utility functions Uγ is parameterized by a parameter γ ∈ RK such that U(0,··· ,0)(x) corresponds
to the risk-neutral case), we note that for any pair (b, f), the function (q0, U) 7→ Πi(b, f, q0)

is continuous, in particular given the linearity structure with respect to the utility function U

given the expected utility criterion. Berge’s Maximum Theorem implies that the correspondence
mapping the utility function to the set of maximizers Q∗i (b) is upper-hemicontinuous (with non-
empty and compact values): for any given sequence of utility functions that converges to the
risk-neutral utility function (i.e. to U(x) = x), then any convergent sequence in the corresponding
sets of maximizers has a limit belonging to the risk-neutral set of maximizers.

Note that the overestimation result holds for any pair (b, f), and thus in particular for the
equilibrium pair. Deception also holds for limited risk aversion, insofar as overestimation implies
deception (Corollary 7).

Case 2: F = {f ∈ Fsym|q̄f ∈ [qmin, qmax]} and M := {T(b,q0)}(b,q0)∈R×[qmin,qmax] is
production-insuring on F against the menu of linear contracts {λ(b) · q + µ(b)}b∈R.

Under risk neutrality and given the mean-preserving condition under truthful reporting, we
have for any given firm i

Πi(b, f, q0)−Πi(b, f, q̄) = Ef [T(b,q0)(q)− Ci(f)]− Ef [T(b,q̄)(q)− Ci(f)]

= Ef [T(b,q0)(q)]− [λ(b) · q̄f + µ(b)].

We have from Proposition 9 that Ef [T(b,q0)(q)] ≥ λ(b) · q̄f + µ(b) if q0 ≥ q̄f and that
Ef [T(b,q0)(q)] ≤ λ(b) · q̄f + µ(b) if q0 ≤ q̄f . Furthermore, for any f , there exists q0 > q̄f such
that f ′(q0) < 0 (formally, f ′(q0) ≤ 0 for any q0 ≥ q̄f , since f is single-peaked and f ′ cannot be
uniformly equal to zero). We thus obtain that Πi(b, f, q0) > Πi(b, f, q̄) for some q0 > q̄, and thus
ΠS
i (b) > ΠT

i (b) (with strategic firms declaring some q0 > q̄): the procurement is manipulable at b
for firm i.

As in case 1, we also obtain that for any bid b and any firm i, under risk neutrality, the set
of maximizers Q∗i (b) = Argmax(f,q0)|f∈Fi,q0∈[q̄f ,qmax] Πi(b, f, q0) is a well-defined compact set such
that any pair (f, q∗) ∈ Q∗i (b) satisfies q∗ > q̄f . Consider then that the difference between the
buyer’s expected payoff v · q̄f −Ef [T(b,q∗)(q)] (given the pair (f, q∗) chosen by the contractor) and
the expected payoff from the buyer’s perspective, assuming the contractor is truthful in reporting
q∗, is equal to v · q∗ − [λ(b)q∗ + µ(b)] = v · q̄f + (v − λ(b)) · (q∗ − q̄f )− [λ(b)q̄f + µ(b)]. Here the
inequality ΠS

i (b) > ΠT
i (b) implies that Ef [T(b,q∗)(q) > Ef [T(b,q̄f )(q) = [λ(b)q̄f + µ(b)]. Since we

also have (v−λ(b)) · (q∗− q̄f ) ≥ 0 (given our assumption that λ(b) ≤ v), we obtain that the buyer
suffers deception when the contractor is a strategic firm.

As in Case 1, Berge’s Maximum Theorem guarantees that for any firm i and any possible
bid b, the firm, if strategic, strictly overstates its production when risk aversion is limited. Fur-
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thermore, the difference between the buyer’s expected payoff and the payoff she expects with the
mistaken belief that the contractor is truthful is continuous in the utility function, guaranteeing
that deception also holds with limited risk aversion. Q.E.D.
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Supplementary Appendix

(for online publication only)
The Supplementary Appendix is comprised of three appendices. Appendix SA1 is dedicated to

the analysis of the procurement game under different specifications: The proofs are tedious but not
novel. Appendix SA2 presents the French offshore wind auctions and details how production risk
has been modeled as well as additional assumptions made for the calibration exercise. Appendix
SA3 is a complement to the contract design analysis.

Appendix SA1: Equilibrium analysis of the competitive procure-
ment

Tie-breaking rule: In our analysis under full complete information, we assume that ties are
broken in favor of the firm with a strictly positive payoff when it wins (if there is a single firm
with a strictly positive payoff).44 In the other cases under complete information, the tie-breaking
rule can be random. Note that the case with more than one firm with a strictly positive payoff
is not relevant to the equilibrium path since one of these firms would have incentives to lower its
bid, which would violate the equilibrium conditions.

For Proposition 11, we make an additional technical assumption for the tie-breaking rule.
Unlike the tie-breaking assumption above, this additional assumption only matters in non-generic
subcases, and is introduced here for simplicity. We assume that if there is a tie where multiple
firms have a zero payoff when winning, then the tie is broken in favor of the truthful firms.

Equilibrium analysis under full complete information

Let ki ∈ {T, S} denote the type of firm i regarding strategic/truthful behavior. In this subsection,
we assume that the vector of types (k1, · · · , kN ) is common knowledge among firms.

A general equilibrium characterization – Consider the lowest-price auction with a given
menu of contractsM. Let b̂i := b̂kii (M) denote the zero-profit bid of firm i.

Proposition 14. Under full complete information, the contractor is a firm with the lowest zero-
profit bid, and the equilibrium bid is the second lowest zero-profit bid. Formally, the winning
firm iw ∈ Argmini=1,...,N b̂i and its equilibrium bid bw is equal to mini 6=iw b̂i. Furthermore, the

44More generally, see Simon and Zame (1990) on the need to endogenize the tie-breaking rule to guarantee
equilibrium existence in discontinuous strategic games, and thus in particular in first-price auctions.
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contractor iw chooses a pair of project and declaration (f, σ) such that f ∈ fT (bw, iw) and σ =

σ̃(fT (bw, iw)) if kiw = T , and (f, σ) ∈ Argmax(f,σ)∈Fiw×Σ Πiw(bw, f, σ) if kiw = S.

Proof of Proposition 14
First, consider pure strategy equilibria. Let beqi denote the equilibrium bid of firm i and

beq := mini=1,...,N b
eq
i denote the minimum of the equilibrium bids. Our undominated strategy

assumption implies that beqi ≥ b̂i for each i. If the equilibrium bid of a given firm i is strictly above
beq, then its winning probability in the lowest-price auction is zero, and we must have b̂i ≥ beq.
Otherwise, firm i would raise a strictly positive payoff by bidding a bit below beq and winning the
auction for sure. In other words, firm i would strictly increase its payoff by deviating from its
equilibrium bid, which would create a contradiction.

If there is a single firm bidding beq in equilibrium, then that firm would strictly increase its
expected payoff by bidding a bit above beq while still winning the auction with probability one.
Thus, there are at least two firms that bid exactly beq. In the corresponding tie, there is at most
one firm that wins the auction with probability one. Consider a firm i that bids beq and wins the
auction with probability strictly less than one. If b̂i < beq = beqi , then firm i would strictly increase
its expected payoff by undercutting slightly its bids to win with probability one. We then have
b̂i = beq. Finally, we obtain that the tie is such that there is at most one firm j ∈ {1, . . . , N} such
that b̂j < beq: this follows from the fact that we have shown that b̂i ≥ beq if beqi > beq, and that
we cannot have two firms i and i′ such that max{b̂i, b̂i′} < beqi = beqi′ = beq.

Given our tie-breaking rule, if there is a firm j with b̂j < beq, that firm will surely win the
auction, and firms i 6= j would have a zero-profit bid b̂i ≥ beq. Otherwise, if no such firm exists, we
have b̂i = beq for the (at least two) firms i such that beqi = beq, while b̂j > beq for the firms j bidding
strictly above beq. In any case, we obtain that iw ∈ Argmini=1,...,N b̂i and b

eq
iw = beq = mini 6=iw b̂i.

These are necessary conditions for any (pure strategy) equilibrium, and it is straightforward
that such an equilibrium exists: e.g., where beqi = b̂i if i 6= iw and beqiw = mini 6=iw b̂i.

We have then established Proposition 14 when restricting to pure strategy equilibria. It is left
to the reader to show that in any mixed strategy equilibrium we still have iw ∈ Argmini=1,...,N b̂i

and beqiw = beq = mini 6=iw b̂i. The main steps are as follows: If Argmini=1,...,N b̂i is a singleton {i∗},
then in equilibrium this firm should win the auction for sure (we have iw = i∗ with probability
one), and iw cannot bid strictly above mini 6=iw b̂i otherwise a losing firm could win the auction
by undercutting firm iw’s bid. The undominated strategy assumption and our tie-breaking rule
assumption also guarantee that losing bidders would never bid strictly below mini 6=iw b̂i. Note
that such mixed strategy equilibria do exist,45 but the outcome does not differ from the one under
pure strategy equilibria.

45For example, each bidder i 6= i∗ could mix uniformly on the interval [̂bi, b̂i + ε] while beqi∗ = mini 6=iw b̂i. If ε is
small enough, then these strategies constitute an equilibrium.

53



Otherwise, if Argmini=1,...,N b̂i is not a singleton, competition between the firms leads to
zero profits (as in Bertrand competition with symmetric firms, which precludes any rent). The
contractor then belongs to the set Argmini=1,...,N b̂i, and bids mini=1,...,N b̂i . Q.E.D.

Application of Proposition 14 to menus of linear contracts:
Let us apply Proposition 14 to both the linear cash and the linear royalty lowest-price auctions,

in order to formally derive some results presented in section 4.1. In these auctions, the menu of
contracts does not depend on the declaration σ: strategic firms do not differ from truthful firms
and b̂ki does not depend on k. Then we will use the shortcut notation b̂i in the following. We also
use the notation iw for the winning firm, iw ∈ Argmini=1,...,N b̂i, and beq := mini 6=iw b̂i for the
corresponding equilibrium bid.

Linear cash lowest-price auctions:
In a linear cash lowest-price auction (characterized by the parameter λ), we have in general

b̂i = min{b ∈ R|max
f∈Fi

Ef [Ui(λ · q + b− Ci(f))] ≥ 0}. (19)

If firms are risk neutral, as we assume next, Equation (19) simplifies to b̂i =

−maxf∈Fi {λ · q̄f − Ci(f)}. Let fw ∈ Argmaxf∈Fiw {λq̄f − Ciw(f)} be the project chosen by
the winning firm iw in equilibrium. Note that the set of optimal projects for a firm does not
depend on its bid.

Since iw ∈ Argmini=1,...,N{b̂i}, then we have −b̂iw = λ·q̄fw−Ciw(fw) ≥ −b̂i ≥ λ·q̄f−Ci(f) for
any pair (i, f). This further implies that the equilibrium social welfare v · q̄fw−Ciw(fw) = λ · q̄fw−
Ciw(fw)+(v−λ)q̄fw which is greater than λ·q̄f∗

i∗
−Ci∗(f∗i∗)+(v−λ)q̄fw = SW ∗+(v−λ)[q̄fw−q̄f∗

i∗
],

where the pair (i∗, f∗i∗) corresponds to a welfare-optimal allocation. As noted in section 4.1, in
the case v = λ, the pair (iw, fw) necessarily corresponds to a welfare-optimal allocation, and
otherwise the difference between the equilibrium and the optimal social welfare is bounded by a
term depending on the difference (v − λ).

Linear royalty lowest-price auctions:
In a linear royalty auction (characterized by the parameter µ), we have

b̂i = min{b ∈ R|max
f∈Fi

{Ef [Ui(b · q̄f + µ− Ci(f)})] ≥ 0}. (20)

We consider that firms are risk neutral, and we let fw ∈ Argmaxf∈Fiw {beq · q̄f − Ciw(f)} be
the project chosen by the winning firm in equilibrium. Note that the set of optimal projects for
a firm now depends on its submitted bid, even if it is risk neutral.

From Proposition 14, the winning firm iw raises a positive payoff if choosing project fw at
equilibrium bid beq, while the other firms would raise a negative payoff with any possible project
if winning at beq. Formally, the winning firm has a payoff beq · q̄fw + µ − Ciw(fw) ≥ 0, and
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for any pair (i, f) with i 6= iw we have beq · q̄f + µ − Ci(f) ≤ 0. Finally, we get that beq · q̄fw −
Ciw(fw) ≥ beq ·q̄f−Ci(f) for any pair (i, f). This further implies that the equilibrium social welfare
v · q̄fw−Ciw(fw) = beq · q̄fw−Ciw(fw)+(v−beq) · q̄fw is greater than SW ∗+(v−beq)[q̄fw− q̄f∗

i∗
]. As

noted in section 4.1, the pair (iw, fw) corresponds to a welfare-optimal allocation in the case where
v = beq and the difference between the equilibrium and the optimal social welfare is bounded by
a term depending on (v − beq).

Proof of Proposition 11

Each firm i is characterized by its type ki ∈ {T, S} regarding strategic/truthful behav-
ior and its cost ci. Firms are ranked such that c1 ≤ · · · ≤ cN . From Proposition 14,
in equilibrium, the contractor iw belongs to the set Argmini=1,··· ,N b̂

ki
i and submits the bid

b̃ = mini 6=iw b̂
ki
i (i.e. the second-lowest zero-profit bid) and, if strategic, reports a declaration

σ∗ ∈ Argmaxσ∈Σ Ef [T(b̃,σ)(q)]. Given that the menu M′ is assumed to be manipulable for any
bid and any firm, then we must have σ∗ 6= σ̃(f).

From our tie-breaking rule, if Argmini=1,··· ,N b
ki
i is not a singleton, then the contractor is

strategic only if all firms in Argmini=1,··· ,N b
ki
i are strategic.

Under the strongly strategy-proof menuM, the equilibrium bid (or second-lowest zero-profit
bid) beq = b̂2(M), is characterized by Ef [T

(̂b2(M),σ̃(f))
(q)] = c2, and the buyer’s expected cost is

then c2.
Now consider the menuM′ such that it is production-insuring relative toM. Proposition 3

and the assumption that M′ is manipulable for any i and any bid imply that for any firm i we
have

b̂S1 (M′) ≤ b̂Si (M′) < b̂Ti (M′) and b̂S1 (M′) < b̂T1 (M′) ≤ b̂Ti (M′). (21)

Below we drop the dependence onM′ to alleviate the notation.
Case 1: kiw = S. Assuming that the winning firm iw is strategic, consider a firm j with

the second-lowest zero-profit bid, that is, j ∈ Argmini 6=iw b
ki
i . Then consider two different cases:

either j is strategic, i.e. kj = S, or j is truthful, i.e. kj = T .
Case 1a: kj = S. From the definition of the zero-profit bid of a strategic firm, note that

maxσ∈Σ Ef [T
(̂bSi ,σ)

(q)] = ci for both i = iw and i = j. Since we must have b̂Siw ≤ b̂Sj , this implies
that iw < j and thus that j ≥ 2. Then the buyer’s expected cost is maxσ∈Σ Ef [T

(̂bSj ,σ)
(q)] = cj ≥

c2.
Case 1b: kj = T . From the definition of the zero-profit bid of a truthful firm, we

have E[T
(̂bTj ,σ̃(f))

(q)] = cj . The buyer’s expected cost is equal to maxσ∈Σ Ef [T
(̂bTj ,σ)

(q)] >

Ef [T
(̂bTj ,σ̃(f))

(q)] = cj . Then, if j 6= 1, the buyer’s expected cost is larger than c2.
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Now let us suppose that j = 1, which implies that iw ≥ 2. Then we have b̂Siw ≤ b̂T1 , and
therefore the strategic firm iw makes a positive surplus at price bT1 . Thus, the buyer’s expected
cost is greater than ciw ≥ c2.

If all firms are strategic, then we are in Case 1a with iw = 1 and j = 2, so the buyer’s expected
cost is equal to c2. On the other hand, if the contractor is the only strategic firm, then we must
be in case 1b with either iw = 1 and j = 2 or iw ≥ 2 and j = 1. If iw = 1 and j = 2, then the
buyer’s expected cost is maxσ∈Σ Ef [T

(̂bT2 ,σ)
(q)] > Ef [T

(̂bT2 ,σ̃(f))
(q)] = c2. If iw ≥ 2 and j = 1, then

the tie-breaking rule implies that bSiw < bT1 (if bSiw = bT1 , then the tie should never be broken in
favor of the strategic firm iw) and thus that the strategic firm iw makes a strictly positive surplus
when winning at bid bT1 , which implies that the buyer’s expected cost is strictly greater than ciw
and thus strictly greater than c2.

Case 2: kiw = T . From (21), we must have bTiw = bT1 or equivalently ciw = c1, i.e. the
contractor must be (one of) the most efficient firm(s). We can then assume without loss of
generality that iw = 1. The buyer’s expected cost is then equal to E[T(b̃,σ̃(f))(q)] where b̃ =

mini=2,··· ,N {b̂kii } ≤ bT2 . The buyer’s is then less than E[T(bT2 ,σ̃(f))(q)] = c2.
If all firms are truthful, then b̃ = bT2 and the buyer’s expected cost is equal to c2. Conversely,

if firm 2 is strategic, then b̃ = bS2 < bT2 and the buyer’s expected cost is strictly smaller than c2.
Q.E.D.

Equilibrium analysis under incomplete information with payoff-symmetric
firms (for Proposition 12)

Throughout this subsection we assume that ties are broken randomly. Let us characterize the
equilibrium outcome when firms are payoff-symmetric such that the zero-profit bids b̂ki , k ∈ {T, S},
and the sets fTi (b) and Q∗i (b) do not depend on i and are then denoted by b̂k, fT (b) and Q∗(b).
The equilibrium analysis depends on the strategic/truthful types k of the firms and their beliefs
about the types of their competitors. We assume that it is common knowledge among the firms
that they are payoff symmetric.

The types of firms, and thus the number of strategic firms, are random: we consider an incom-
plete information symmetric setting where each firm is strategic (resp. truthful) with probability
α (resp. 1 − α) independently of the others. Each firm knows its own type and the parameter
α ∈]0, 1[, but ignores the types of the other firms.

Proposition 15. Consider payoff-symmetric firms in a procurement that is manipulable at the
zero-profit bid b̂T of a truthful firm. Suppose that each firm is strategic with probability α ∈
]0, 1[. Consider a menu that is manipulable for any bid (i.e. ΠS(b) > ΠT (b) for any bid b). In
equilibrium, all firms adopt the following strategy:

56



• If the firm is truthful, it makes a decision (̂bT , f, σ̃(f)) with f ∈ fT (̂bT ).

• If the firm is strategic, it adopts a mixed strategy, consisting of the decision (b, f(b), σ(b))

with (f(b), σ(b)) ∈ Q∗(b), where the bid b is distributed according to the CDF

G(b) = max{1− 1− α
α

 N−1

√
ΠS (̂bT )

ΠS(b)
− 1

 , 0}.

The upper (resp. lower) bound of the distribution G is equal to b̂T (strictly greater than b̂S).

From Proposition 15 we get the analog of Corollary 4 with the twist that the bid distribution
is now stochastic: any equilibrium bid realization of a menu of contract M′ that provides more
insurance than a strongly strategy-proof menu M is lower than the equilibrium bid under M.
We also see that as the probability of a firm being strategic increases, the bid distribution shifts
down. However, lower bids do not imply a higher payoff for the buyer. On the contrary, strategic
firms reap the positive payoff (1 − α)N−1ΠS (̂bT ) > 0. Each firm is strategic with probability α
and thus the joints rents captured by the N firms are equal to N · α · (1 − α)N−1ΠS (̂bT ) > 0.
Under risk neutrality, the buyer’s expected cost is equal to the production cost c plus the joints
rents captured by the firms, which concludes the proof of Proposition 12.

Remarks: Our equilibrium analysis is analogous to the analysis of first-price auctions with
two (possibly risk-averse) symmetric bidders with binary valuations developed by Maskin and
Riley (1985): being strategic (resp. truthful) in our procurement setting corresponds to having
a high (resp. low) valuation in Maskin and Riley’s (1985) auction setting.46 However, there are
three differences: First we consider any number of bidders.47 Second, the expected payoff of a
firm Πk(b), k ∈ {T, S} is no longer linear in b. Finally, we consider procurements involving a
(secret) project choice and a (public) declaration about it. If the sets fT (̂bT ) and Q∗(b) are not
singletons for any b in the support of G, this extra dimension leads to equilibrium multiplicity
(in contrast to the analysis of Maskin and Riley (1985)). However, all equilibria are somehow
equivalent in that they involve the same bid distribution and the same expected payoffs for the
firms. In general, however, the buyer is not indifferent between them.

Proof of Proposition 15
The equilibrium analysis is analogous to Maskin and Riley (1985): having a low (resp. high)

valuation here corresponds to being a truthful (resp. strategic) firm. Note that the assumption
that the procurement is manipulable at the bid b̂T implies that ΠS (̂bT ) > ΠT (̂bT ) = 0, which

46Doni and Menicucci (2012) extend the analysis to two asymmetric bidders when bidders are assumed to be
risk neutral.

47Technically, this is the most challenging extension because it is less straightforward to show that all bidders
use the same bid distribution when we have more than two bidders.
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guarantees that strategic firms make positive surplus. As in Maskin and Riley (1985), we have in
equilibrium that truthful bidders must submit their zero-profit bid b̂T and that strategic bidders
reap a strictly positive payoff and bid below b̂T . We do not detail the corresponding arguments
because they are identical in the present setting.

Let us focus on the bidding strategies of strategic bidders, which are denoted next by the
CDFs Gi, i = 1, . . . , N . Let Sup(Gi) ⊆] −∞, b̂T ] denote the support of the distribution Gi. We
necessarily have Sup(Gi) ⊆

⋃
j 6=i Sup(Gj) ∪ {b̂T } for any i: any bid b in the support of firm i’s

bid distribution must belong to the support of the highest bid among its competitors. Otherwise
firm i, if strategic, would strictly benefit from submitting a bid slightly above b, since it would
not change its (positive) probability of winning and would strictly increase its payoff conditional
on winning.

Let us show that the distribution Gi has no atom. Suppose b∗ is an atom of Gi. We cannot
have b∗ = b̂T in equilibrium, because it would raise a contradiction with strategic bidders getting
a strictly positive payoff: bidder i would benefit by bidding slightly below b̂T , so that it wins the
auction with a strictly greater probability. Now consider b∗ < b̂T so that b∗ ∈

⋃
j 6=i Sup(Gj).

Let G∗−i := 1 −
∏
j 6=i(1 − α + α(1 − Gj)) denote the distribution of the lowest bid among firm

i’s competitors. First b∗ cannot be an atom of G∗−i: if it were, a strategic firm i would benefit
from bidding a bit below b∗ to win with probability one. Second, consider the case where G∗−i
has no mass in the right neighborhood of b∗: then a strategic firm i would benefit from bidding a
bit above b∗: it would not change its (positive) probability of winning and would strictly increase
its payoff conditional on winning. The remaining case (given that b∗ ∈

⋃
j 6=i Sup(Gj)) is when

G∗−i has some mass on the right neighborhood of b∗. In such a case, there exist j 6= i such that
Gj has some mass on the right neighborhood of b∗. Then there exists a strategic firm j that
would benefit from bidding slightly below b∗ instead of slightly above b∗: this follows from the
discontinuity of the winning probability around b∗ given the atom while the function b 7→ ΠS(b)

is continuous. Thus, we have shown that the distribution Gi, i = 1, . . . , N has no atom. Let gi
denote the corresponding density (which may be discontinuous).

Let πi(b) denote the expected payoff of a strategic firm i bidding b. Since the bidding distri-
butions of strategic firms are atomless, the probability of facing a tie with a bid below b̂T is zero,
and thus we have

πi(b) =
∏
j 6=i

[1− α+ α(1−Gj(b))] ·ΠS(b)

for any b < b̂T . By continuity, we let πi(̂bT ) := (1 − α)N−1 · ΠS (̂bT ), which corresponds to the
expected payoff of a strategic firm bidding b̂T when ties are broken in its favor.

The equilibrium condition for any strategic firm i implies an indifference condition for any bid
on its support: πi(b) does not depend on b on the set Sup(Gi). If b̂T ∈ Sup(Gi), we have for any
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b ∈ Sup(Gi): ∏
j 6=i

[1− α+ α(1−Gj(b))] ·ΠS(b) = (1− α)N−1 ·ΠS (̂bT ) (22)

Let bi (resp. bi ≤ b̂T ) denote the lower (resp. upper) bound of Sup(Gi). Let b ≡
maxi=1,...,N{bi}. If b < b̂T , then a firm j ∈ Argmaxi=1,...,N{bi} would strictly benefit from
bidding slightly above b = bj (while staying below b̂T ) instead of bidding bj ∈ Sup(Gj). So there
is at least one firm i1 such that bi1 = b̂T : there is a positive mass of bids in the left neighborhood
of b̂T . Since Sup(Gi1) ⊆

⋃
j 6=i Sup(Gj)∪ b̂T , we finally obtain that there exists a firm i2 such that

bi2 = b̂T . By multiplying both sides of the indifference condition (22) by [1 − α + α(1 − Gi(b))],
we obtain for i ∈ {i1, i2} that

Gi(b) =
1

α
· [1−

∏N
j=1[1− α+ α(1−Gj(b))] ·ΠS(b)

(1− α)N−1 ·ΠS (̂bT )
] =

1

α
· [1− G∗(b) ·ΠS(b)

(1− α)N−1 ·ΠS (̂bT )
] (23)

for any b ∈ Sup(Gi) and where G∗(b) :=
∏N
j=1[1 − α + α(1 − Gj(b))]. Note that the right-hand

term in (23) does not depend on i.
Let N1 := {i ∈ {1, . . . , N}|bi = b̂T }. If N1 6= {1, . . . , N}, let b := maxj /∈N1

bj < b. If
N1 = {1, . . . , N}, let b := mini∈N1{bi}. Let us show by contradiction that [b, b] ⊆

⋃
i∈N1

Sup(Gi).
In particular, it is equivalent to saying that there is no gap in the support of the lowest bid when
N1 = {1, . . . , N}. If there exist b∗ ∈]b, b[ such that b /∈ Sup(Gi) for any i, then if we take the
upper bound of the set {b ∈ Sup(G∗)|b < b∗}, denoted next by b̃ < b∗, then a strategic firm
bidding b̃ in equilibrium would strictly benefit from bidding b∗ which raises a contradiction.

Let us define the function G̃ on [b, b] such that G̃(b) := 1
α · [1 − G∗(b)·ΠS(b)

(1−α)N−1·ΠS (̂bT )
]. Since

[b, b] ⊆
⋃
i∈N1

Sup(Gi) and G̃ is continuous, we obtain that the function G̃ is non-decreasing.
Furthermore, G̃ cannot be flat on a given interval I ⊆ [b, b], because it would imply that G∗ has
no mass on this interval I which would raise a contradiction with [b, b] ⊆

⋃
i∈N1

Sup(Gi). So the
function G̃ must be increasing on [b, b]. Since Gi(b) = G̃(b) on Sup(Gi) for every i, we finally get
Gi(b) = G̃(b) for any b ∈ [b, b] and i ∈ N1.

If N1 = {1, . . . , N}, then any equilibrium must be symmetric (Gi = G for any i) and, given
the indifference condition, is characterized by

G(p) = 1− 1− α
α

 N−1

√
ΠS (̂bT )

ΠS(b)
− 1

 (24)

on the interval [b∗, b̂T ], where b∗ is the unique solution of [1 − α + α(1 − G(b∗))]N−1 · ΠS(b∗) =

(1− α)N−1 ·ΠS (̂bT ). It is then straightforward that strategic firms would not benefit by bidding

59



outside the interval [b∗, b̂T ].
The rest of the proof consists in showing that we must have N1 = {1, . . . , N}. Suppose, on

the contrary, that N1 6= {1, . . . , N}. Let N2 := {i|bi = b} 6= ∅ where b is defined as above. On
the interval [b, b̂T ], the equilibrium strategies of the firms in N1 are given by (24). Consider two
different cases regarding b and b∗. A) If b < b∗, there would be a gap in the bid distribution, which
would raise a contradiction (firms in N2 would benefit by bidding slightly above b while staying
below b∗). B) Now consider that b ≥ b∗, i.e., the case where the bid b belongs to the support of
the bid distribution of firms in both N1 and N2. Note that by construction of b, we have Gi(b) = 1

if i /∈ N1 and Gi(b) < 1 for i ∈ N1. However, given (23), at bid b, Gi(b) should be equal for firms
i in N1 ∪ N2. So we have raised a contradiction and thus shown that N1 = {1, . . . , N}, which
concludes the proof.

Q.E.D.

On the optimality of the LCMR procurement under endogenous entry (for
Proposition 5)

In our setting with exogenous entry and when there is at least to firms (N ≥ 2) with SW ∗i >

SWNO for each firm i, there is no need to specify a reserve price under the LCMR procurement:
it is always optimal to develop a project not only in the optimal allocation with all firms but also
if we exclude the optimal firm. More generally, the LCMR procurement should involve a reserve
price equal to −SWNO. When there is a single firm, we consider that the procurement involves
a reserve price equal to −SWNO such that in equilibrium the contract will be the (p̄,−SWNO)-
linear contract and the payoff of contractor, say i, is equal to SW ∗i − SWNO.

Throughout this section, we assume that firms are risk neutral: without loss of generality, it
corresponds to Ui(x) = x in our model. Consider furthermore that firms learn their cost function
after deciding to enter the procurement which involves a sunk cost ce > 0 which is assumed to be
common to all firms. The cost functions Ci, i = 1, . . . , N , are assumed to be conditionally i.i.d.
random variables. The N firms are thus ex ante symmetric: the distribution of the cost function
Ci is the same for each firm i and does not depend on entry decisions. We emphasize that we
allow cost functions to be correlated across firms (e.g. environments where all firms have the same
cost functions corresponds to a special case). The entry stage, which takes place between stages
1 and 2, is assumed to be uncoordinated: ex ante symmetric firms decide simultaneously whether
to enter or not the procurement. As in Levin and Smith (1994) and Jehiel and Lamy (2015),
we restrict attention to symmetric equilibria at the entry stage and we assume that ce is large
enough such that full entry is not an equilibrium under the LCMR procurement (or equivalently
is not socially efficient under an ex post efficient procurement as explained below). After entry,
we assume that the cost functions of the n entrants, C1, . . . , Cn, are common knowledge among
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entrants. Let π denote the probability that each firm enters the procurement.
Given that entry represents a physical sunk cost (and not a transfer between the buyer and

the bidders as in auctions with entry fees), the social welfare is now equal to p̄q̄f − Ci(f) − nce
if there are n entrants and if the contractor is firm i with the cost function Ci choosing project
f . For a given procurement, let SW [n] denote the expected gross social welfare (absent of the
entry costs) when there are n entrants. In particular, if n = 0, we have SW [0] = SWNO. If we
consider a procurement where there is always a winning firm denoted iw and a winning project
fw if n ≥ 1, then we would have SW [n] = E[p̄ · q̄wf − Ciw(fw)|n]. Note that the expectation is
over the realization of the cost functions C1, . . . , Cn which also drives the determination of iw and
pw. Under the entry probability π, the expected total social welfare TSW (π) is then equal to∑N

n=0 {
N !

n!(N−n)!π
n(1− π)N−nSW [n]− nce} =

∑N
n=0 {

N !
n!(N−n)!π

n(1− π)N−nSW [n]} − πNce.
Let πeq the equilibrium entry probability. If we have πeq ∈ (0, 1), then firms are indifferent

between entering or not the procurement and the expected profit of an entrant in the procurement
(i.e. absent of the sunk entry cost) is equal to ce. If πeq ∈ [0, 1), then firms’ expected joint profit
is null. On the contrary, if πeq = 1, then the expected profit of all the firms in the procurement is
greater or equal to N · ce. It implies that the buyer’s expected payoff in equilibrium is lower than
TSW (πeq) and that both are equal if the entry probability πeq ∈ [0, 1).

An upper bound for the expected total welfare is when the procurement selects ex post the
socially optimal firm and the optimal project and also the optimal entry probability. Let SW ∗[n]

denote the expected gross social welfare (i.e. excluding the entry costs) when there are n entrants
under the ex post optimal allocation, i.e. when iw ∈ Argmaxi=1,··· ,n maxf∈F p̄q̄f − Ci(f) and
fw ∈ Argmaxf∈F p̄q̄f − Ciw(f) if maxi=1,··· ,n maxf∈F p̄q̄f − Ci(f) ≥ SWNO and no contract is
signed otherwise. Let

TSW ∗(π) :=

N∑
n=0

{ N !

n!(N − n)!
πn(1− π)N−nSW ∗[n]− nce}

denote the expected net welfare (i.e. including the entry costs) under an ex post effi-
cient procurement when the entry probability is π. Naturally, in any procurement, we have
TWS(π) ≤ TSW ∗(π) for any entry probability π ∈ [0, 1]. Note that TSW ∗

dπ (π) = N ·(∑N−1
n=0

N−1!
(n−1)!(N−1−n)!π

n(1− π)N−1−n
(
SW ∗[n+ 1]− SW ∗[n]

)
− ce

)
.

As detailed in Jehiel and Lamy (2015), the differences SW ∗[n+1]−SW ∗[n], n = 0, . . . , N−1,
are non-increasing in n with SW ∗[2]−SW ∗[1] < SW ∗[1]−SW ∗[0] which implies that the function
TSW ∗(.) is strictly concave on [0, 1]. Let π∗ denote then the optimal entry probability. If
SW ∗[1] − SW ∗[0] ≤ ce, then dTSW ∗

dπ (0) ≤ 0 and π∗ = 0. If SW ∗[N ] − SW ∗[N − 1] ≥ ce, then
dTSW ∗

dµ (1) ≥ 0 and π∗ = 1. If SW ∗[1]− SW ∗[0] > ce > SW ∗[N ]− SW ∗[N − 1], then π∗ ∈ (0, 1)

and π∗ is characterized as the (unique) solution of the first order equation dTSW ∗

dµ (π)(π∗) = 0 or
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equivalently

N∑
n=1

N !

n!(N − n)!
πn−1(1− π)N−n

(
SW ∗[n]− SW ∗[n− 1]

)
= Nce. (25)

The case where SW ∗[N ]−SW ∗[N1] < ce, or equivalently π∗ ∈ [0, 1), is referred to next as the
case where the optimal entry profile is mixed. Since SW ∗[N ]−SW ∗[N1] ≤ N ·(SW ∗[1]−SW ∗[0]),
then we have SW ∗[N ]− SW ∗[N1] < ce if N is large.

Since the buyer’s expected cost in equilibrium is smaller than TW (πeq) which is smaller than
TW ∗(π) ≤ TW ∗(π∗), then TSW ∗(π∗) corresponds to an upper bound for the buyer’s expected
cost. Let us now establish that the LCMR procurement reaches this bound if the optimal entry
profile is mixed.

If the procurement implements the optimal allocation and provides marginal rewards to the
contractor (among n ≥ 1 entrants), the expected gross payoff of the contractor is equal to SW ∗[n]−
SW ∗[n− 1] and the equilibrium profile πeq is then characterized by the condition

N∑
n=1

N !

n!(N − n)!
(πeq)n(1− πeq)N−n[SW ∗[n]− SW ∗[n− 1]] = πeq ·Nce (26)

if this equation has a solution in [0, 1], while πeq = 0 (resp. πeq = 1) if SW ∗[1]− SW ∗[0] < ce

(resp. SW ∗[N ]− SW ∗[N − 1] > Nce).
The optimality conditions that characterize π∗ and the equilibrium conditions that character-

izes πeq in the LCMR procurement coincides and we obtain thus that πeq = π∗: in equilibrium
the entry profile is the welfare maximizing one under the LCMR procurement.

Finally, it implies that the buyer’s expected payoff reaches the upper bound TSW ∗(π∗) under
the LCMR procurement if π∗ < 1.

In words, our analysis with endogenous entry can be summarized shortly as follows:

Proposition 16. Under complete information after entry and if the optimal entry profile is mixed,
then the LCMR procurement maximizes both the social welfare and the buyer’s expected payoff if
firms are risk neutral.

The procurement where each firm i submits a bid pi (while project bids play no role), the
firm iw with the lowest bid wins the auction and the contract is the (p̄, pisl)-linear contract, where
pish corresponds to the second lowest bid (formally pisl = min{−SWNO,mini 6=iw pi}), is referred
to next as the Second Lowest Price Marginal Rewards (SLCMR) procurement. If firms are risk
neutral, then the project chosen by a firm for a given (p̄, µ)-linear contract does not depend on the
lump-sum transfer µ. In the SLCMR procurement, it is a dominant strategy for each firm i to bid
−SW ∗i and the SLCMR procurement implements the optimal allocation and provides marginal
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rewards. The SLCMR procurement maximizes the social welfare and the buyer’s expected cost
without any restriction on firms’ beliefs at the auction stage.

Remarks: 1) Levin and Smith (1994) consider a model with adverse selection but no moral
hazard. In Levin and Smith’s (1994) auction setting, the second price auction provides marginal
rewards and solves both the adverse selection and the entry model. In our setting with moral
hazard, providing marginal rewards solves also the moral hazard problem. 2) Jehiel and Lamy
(2015) have established that Levin and Smith’s (1994) analysis extend to environments with some
kinds of ex ante asymmetries. The same arguments would work with moral hazard as well.
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Appendix SA2: Details on the French offshore wind procurement
auctions and the calibration exercise

In 2011 and 2013, the French government organized separate procurement auctions for the devel-
opment of offshore wind farms in certain pre-selected locations. The nameplate capacity, i.e. the
maximum power that the installation can produce under optimal conditions, which is a verifiable
technical characteristic, was also predefined by the French government.48 The main characteristics
of these projects (name, location, capacity in MW) are listed in Table 1.

In each auction, each bidder submits a bid. The winning bidder is the firm that submits
the lowest bid. In addition to submitting a bid, bidders were invited to report their expected
yearly production or “reference production.” There were no explicit ranges for eligible reference
production, but unrealistic reference production would presumably have led to disqualification.
Our analysis leaves out the disqualification risk associated with misreporting insofar as we esti-
mate that the optimal overestimation never exceeds 13%, a figure which is of the same order of
magnitude as the prediction bias observed in practice for wind farms (Lee and Fields, 2020).

Table 1: Characteristics on the wind farm projects (source : European Commission (2019) and
French Energy Regulatory Commission (2011, 2013))

Site Location Capacity IC (CAPEX) OC (OPEX/year) Awarded price
(lat.,long.) in MW M e M e e/MWh

Le Tréport (50.1, 1.1) 496 2000 105 131
Ile d’Yeu (46.9, -2.5) 496 1860 110 137
Fécamp (49.9, 0.2) 497 1850 75 135.2

Courceulles (49.5, -0.5) 448 1600 69 138.7
Saint-Nazaire (47.2, -2.6) 496 1800 78 143.6

At the end of each year and during 20 years, the contractor receives the payment Tb,q0(q),
where q is the total amount of electricity produced in that year, and where b and q0 are the bid
and the reference production submitted in the auction. The function Tb,q0(q) is depicted in Figure

48The auction and contract rules are provided (in French) by the French Energy Regulatory Commis-
sion for both auction rounds from 2011 and 2013: www.cre.fr/documents/appels-doffres/appel-d-offres-
portant-sur-des-installations-eoliennes-de-production-d-electricite-en-mer-en-france-metropolitaine.html and
www.cre.fr/documents/appels-doffres/appel-d-offres-portant-sur-des-installations-eoliennes-de-production-d-
electricite-en-mer-en-france-metropolitaine2.html.
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3, and its explicit expression is as follows:

Tb,q0(q) =



b · q if q ≤ 0.85q0

b · (2.8q − 1.53q0) if 0.85q0 ≤ q ≤ 0.9q0

b · (0.1q + 0.9q0) if 0.9q0 ≤ q ≤ 1.1q0

b · (2.8q − 2.07q0) if 0.1q0 ≤ q ≤ 1.15q0

b · q if q ≥ 1.15q0

A mild difference from our static theoretical framework is that for each project f we consider
both a (fixed) investment cost ICf incurred before production and (fixed) operating costs OCf
incurred each year. For a given decision (b, f, q0), firms’ expected payoff difference between winning
and losing the auction can then be expressed as:

Ef

[
U(

20∑
t=1

[b ·Rq0(qt)−OCf ]

(1 + r)t
)

]
− U(ICf ), (27)

where the expectation is made with respect to the vector of yearly production (q1, . . . , q20), where
we take the CRRA utiity function U(x) = x1−γ

1−γ , and where r denotes firms’ annual discount rate,
which is set equal to 5.7%.49 For a given bid b and a given project f , a strategic firm reports an
expected production q∗0(b, f) that maximizes the expression in (27).

Our cost assumptions for the various projects come from a report by the European Commis-
sion.50 are reported in Table 1. Firms are assumed to be payoff-symmetric and to enter the
procurement with a single project whose production distribution is constructed as follows.

The hourly electricity production of these farms is simulated using the model developed by
Staffell and Pfenninger (2016) for 19 years (from 2000 to 2018), thanks to the website https:

//www.renewables.ninja/ to which the location and the characteristics of the turbine were given
as inputs. We take the turbine Vestas V164 8000. We obtain hourly production from the simulator
and aggregate it to a quarterly level. We then bootstrap our 19 years of quarterly production
data to generate the distribution of yearly production: we randomly draw each quarter from one
of the 19 years before summing the four quarters to generate yearly production points. This
resampling approach to generate more than our original 19 years of production is relevant if there
is no significant autocorrelation between quarterly aggregate production, which we verify is the
case for all included wind farms.

Finally, the distribution of the vector of yearly-production (q1, . . . , q20) is constructed as fol-
49Our choice is based on an estimation of the cost of capital for onshore wind projects in France by Angelopoulos

et al. (2016).
50https://ec.europa.eu/competition/state_aid/cases1/201933/265141_2088479_221_2.pdf
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lows: each yearly-production qt is the product of a yearly-dependent production drawn indepen-
dently across years from the bootstrapped distribution defined above, and a term 1 + ε, where ε is
a non-year-dependant noise distributed according to a centered normal distribution with variance
σ2, representing an estimation error during the development of the project. This noise reflects
the fact that firms do not have perfect knowledge of their expected production.51 We assume that
σ = 6.3%, which corresponds to the mean absolute error of 5% reported in the literature. In fact,
this is the main driver of the risk premiums relative to net present value of the subsidy contracts:
unlike weather risk, this additional risk is not averaged out over the 20 years of production.

51In the past, estimates of expected wind turbine production have suffered from significant bias, as examined by
Lee and Fields (2020). Methodologies have been improved to reduce the bias, but they still contain economically
relevant errors: for example, Jourdier and Drobinski (2017) show that the commonly used statistical model based
on Weibull distributions leads to a mean absolute error of around 4 or 5% of the average electricity production.
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Appendix SA3: Complement to the contract design analysis

Proof of the results at the end of Section 4.3 for a parametric class of contracts.

As a complement to Theorem 10, we further study a much more restricted setting to provide some
insights about how a risk-averse contractor reports its expected production depending on various
parameters. The setting considered is as follows:

• The menu of contracts Mw := {Tw(b,q0)}(b,q0)∈R2
+
is parameterized by w ∈]0, 1[ and is such

that Tw(b,q0)(q) = λ(b) · q0 + µ(b) if q ∈ [(1− w)q0, (1 + w)q0] and Rw(q, q0) = λ(b) · q + µ(b)

otherwise. In other words, the contractor is perfectly insured and its remuneration depends
only on reported expected production q0 as long as its actual production is no more than
±w% away from q0. Beyond this interval, the remuneration is the same as under the
corresponding linear contract.

• The production risk is distributed according to f ∈ Fsym and its support is assumed to be
equal to [(1− δ)q̄, (1+ δ)q̄] with δ ≤ w. A direct consequence of this last restriction is that a
truthful contractor would be fully insured: the whole support of its production distribution
is included in the area where the payment does not depend on q.

From now on, we fix the bid b and the distribution f . Let us then define the function Ū :

R+ 7→ R such that Ū(x) := Ui(λ(b) · x + µ(b) − Ci(f)) for a given contractor i. Ū is concave as
Ui is concave. The contractor’s payoff when reporting q0 is equal to Ef [U(Tw(b,q0)(q)−Ci(f)]. The
contractor’s payoff under truthful reporting is then equal to Ū(q̄) since the payment is always
equal to λ(b)q̄ + µ(b) for any realization on the support of f . To derive the optimal reporting of
q0, we consider the contractor’s payoff in four separate cases regarding the chosen q0 which cover
all possible reported q0 (given the assumption δ ≤ w):

1. q0 is such that actual production never falls in the insured range;

2. q0 is such that actual production always falls in the insured range (which includes the case
q0 = q̄, i.e. truthful reporting);

3. q0 is such that actual production sometimes falls in the insured range, sometimes above;

4. q0 is such that actual production sometimes falls in the insured range, sometimes below.

q0

q̄

1−δ
1+w · q̄

1+δ
1+w · q̄

1−δ
1−w · q̄

1+δ
1−w · q̄

Case 1 Case 3 Case 2 Case 4 Case 1
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Case 1 Actual production never falls in the insured range if q0 is chosen such that either
(1 + δ)q̄ < (1 − w)q0 or (1 − δ)q̄ > (1 + w)q0, i.e., for any q0 outside the interval [ 1−δ

1+w q̄,
1+δ
1−w q̄].

For such q0, the contractor’s expected payoff is Ef [Ū(q)] ≤ Ū(Ef [q]) = Ū(q̄). The last inequality
results from the concavity of Ū and implies that the case 1 never brings a strictly better payoff
to the contractor than truthful reporting.

Case 2 Actual production always fall in the insured range if q0 is chosen such that (1−w)q0 ≤
(1 − δ)q̄ and (1 + w)q0 ≥ (1 + δ)q̄, i.e., for q0 ∈ [ 1+δ

1+w q̄,
1−δ
1−w q̄]. In this interval, the contractor’s

expected payoff is Ef [Ū(q0)], which is then maximized for the highest value of q0 within this
interval, i.e. for q0 = 1−δ

1−w q̄ ≥ q̄.

Case 3 This case corresponds to the reference productions such that the upper bound of the
insurance range is within the support of f : (1 − δ)q̄ < (1 + w)q0 < (1 + δ)q̄, or equivalently
q0 ∈] 1−δ

1+w q̄,
1+δ
1+w q̄[. The contractor’s expected payoff can then be expressed as

Ef [U(Tw(b,q0)(q)− Ci(f))] = F ((1 + w)q0) · Ū(q0) +

∫ (1+δ)q̄

(1+w)q0

Ū(q)dF (q).

Let us define the distribution f∗ from the (atomless) CDF f , by replacing the smooth part
on the interval [(1 − δ)q̄, (1 + w)q0] by an atom at q0. Formally, F ∗(q) = 0 for q < q0, F ∗(q) =

F ((1 + w)q0) for q ∈ [q0, (1 + w)q0] and F ∗(q) = F (q) for q ≥ (1 + w)q0. Equipped with this
definition we have Πi(b, f, q0) = Ef∗ [Ū(q)] ≤ Ū(Ef∗ [q]) where the latter inequality comes from
the concavity of Ū . Therefore if we show that Ū(Ef∗ [q]) ≤ Ū(q̄), then we get that no q0 in this
interval brings a better expected payoff to the contractor than truthfully reporting q̄.

We then want to show for any q0 ∈ [ 1−δ
1+w q̄,

1+δ
1−w q̄] that Ef∗ [q] ≤ q̄, or equivalently that:

F ((1 + w)q0) · q0 ≤
∫ (1+w)q0

(1−δ)q̄
qdF (q). (28)

First note that for q0 ≤ (1 − δ)q̄,
∫ (1+w)q0

(1−δ)q̄ qdF (q) ≥
∫ (1+w)q0

(1−δ)q̄ q0dF (q) = F ((1 + w)q0) · q0. Now,
supposing q0 ≥ (1− δ)q̄ we can decompose the left-hand side in (28) as follows:∫ (1+w)q0

(1−δ)q̄
qdF (q) =

∫ q0

(1−δ)q̄
qdF (q) +

∫ 2q0−(1−δ)q̄

q0

qdF (q) +

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q) (29)

=

∫ q0−(1−δ)q̄

0
[(q0 − ε) · f(q0 − ε) + (q0 + ε) · f(q0 + ε)]dε+

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q).

(30)

Where the two first parts of the integral are merged through a change of variable, resp. ε = q0− q
and ε = q − q0. To characterize this first term in (30), consider ε ∈ [0, q0 − (1 − δ)q̄] and note
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that from the symmetry of f around q̄ we have f(q0 − ε) = f(2q̄ − q0 + ε). Moreover, knowing
q0 <

1+δ
1+w q̄ < q̄ we obtain that q0 − ε < q0 + ε < 2q̄− q0 + ε and therefore since F is single-peaked

we know that f(q0 − ε) = f(2q̄ − q0 + ε) ≤ f(q0 + ε). Thus we obtain:

(q0 − ε) · f(q0 − ε) + (q0 + ε) · f(q0 + ε) = q0(f(q0 − ε) + f(q0 + ε)) + ε((f(q0 + ε)− f(q0 − ε))

≥ q0(f(q0 − ε) + f(q0 + ε)).

Then, plugging this inequality into (30) we obtain:∫ (1+w)q0

(1−δ)q̄
qdF (q) ≥ q0

∫ q0−(1−δ)q̄

0
(f(q0 − ε) + f(q0 + ε))dε︸ ︷︷ ︸

=
∫ 2q0−(1−δ)q̄
(1−δ)q̄ f(q)dq

+

∫ (1+w)q0

2q0−(1−δ)q̄
qdF (q)︸ ︷︷ ︸

≥q0
∫ (1+w)q0
2q0−(1−δ)q̄ f(q)dq

≥ q0

∫ (1+w)q0

(1−δ)q̄
f(q)dq = F ((1 + w)q0) · q0.

We have then established the inequality (28), which implies (as detailed above) that no q0 ∈
[ 1−δ
1+w q̄,

1+δ
1−w q̄] brings a better payoff to the contractor than reporting truthfully q̄.

Case 4 This case corresponds to reported expected productions such that the lower bound of
the insurance range is within the support of F : (1− δ)q̄ < (1− w)q0 < (1 + δ)q̄, or equivalently
q0 ∈] 1−δ

1−w q̄,
1+δ
1−w q̄[. We have already shown through the three previous cases that q0 = 1−δ

1−w q̄

brings a better payoff than any other q0 /∈] 1−δ
1−w q̄,

1+δ
1−w q̄[, therefore the (globally) optimal report of

expected production necessarily lies within the interval [ 1−δ
1−w q̄,

1+δ
1−w q̄[.

The contractor’s expected payoff on this interval is expressed as:

Πi(b, f, q0) =

∫ (1−w)q0

(1−δ)q̄
Ū(q)dF (q) + (1− F ((1− w)q0)) · Ū(q0).

Within this interval, the corresponding derivative with respect to q0 is expressed as:

∂Πi(b, f, q0)

∂q0
= (1− w)

[
Ū((1− w)q0)− Ū(q0)

]
f((1− w)q0) + (1− F ((1− w)q0))Ū ′(q0) (31)

= U ′(q0)f((1− w)q0)

[
1− F ((1− w)q0)

f((1− w)q0)
− (1− w) · Ū(q0)− Ū((1− w)q0)

BarU ′(q0)

]
. (32)

Note that since Ū ′(q0)f((1 − w)q0) > 0, ∂Πi(p,f,q0)
∂q0

has the same sign as the term in brackets
in (32), that we further denote M(q0). Then, any interior optimum within this interval, denoted
by q∗0, must satisfy the FOC:

69



M(q∗0) ≡ 1− F ((1− w)q∗0)

f((1− w)q∗0)
− (1− w) · Ū(q∗0)− Ū((1− w)q∗0)

Ū ′(q∗0)
= 0. (33)

Finally, any optimal reporting q∗0 (for a given pair (b, f)) satisfies either q∗0 = 1−δ
1−w q̄ or the first

order condition (33). The corresponding set of optimal reports, denoted next by Q∗i (b, f), can be
further characterized when assuming:

• The distribution F is such that the function q 7→ 1−F (q)
f(q) is continuously decreasing.52

• The PDF f is continuous on R+, or to put it otherwise the density f is vanishing at the
bounds of its support: limq→(1−δ)q̄ f(q) = 0.

Let us first consider the case of a risk-neutral contractor. In such a case, we use the notation
MRN (q0) for the function M(q0). If U is linear, then Ū is also linear and Ū(q0)− Ū((1−w)q0) =

wq0Ū
′(q0) and we have consequently:

MRN (q0) =
1− F ((1− w)q0)

f((1− w)q0)
− (1− w)wq0.

From the first assumption above, MRN (q0) is decreasing in q0 for any w ∈]0, 1[, and therefore
MRN (q∗0) = 0 admits at most one solution. Moreover, since F is symmetric and single peaked we
have that f(q̄) ≥ 1

2δq̄ . Therefore:

MRN

(
1

1− w
q̄

)
=

1− F (q̄)

f(q̄)
− wq̄ ≤ q̄(δ − w) < 0.

Then there is a unique global optimal which necessarily belongs to the open interval ] 1−δ
1−w q̄,

1
1−w q̄[.

This optimum denoted next qRN0 is characterized as the solution ofMRN (qRN0 ) = 0 and thus does
not depend on b.

In the general case, for any risk-averse contractor with the concave utility function U , we have
Ū(q0) − Ū((1 − w)q0) ≥ wq0Ū

′(q0) and therefore that M(q0) ≤ MRN (q0) for any q0 (with strict
inequalities if U is strictly concave). If q0 > qRN0 , then M(q0) ≤MRN (q) < 0 which implies that
q∗0 /∈ Q∗i (b, f). Overall, for any concave utility function U , any optimum q∗0 ∈ Q∗i (b, f) is below
the optimum with a risk-neutral contractor: q∗0 ≤ qRN0 and the inequality is strict if U is strictly
concave. In other words, any risk averse strategic contractor always overestimate its production
less than a risk neutral strategic contractor.

52This assumption is stronger than most often needed, in order to cover any potential value taken by w: we
actually only need the function M(q0) defined in Eq. (33) to be continuously decreasing in q0 on the interval
] 1−δ
1−w q̄,

1+δ
1−w q̄[.
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In addition, note that the second assumption above (the continuity of f) implies that
limq0→ 1−δ

1−w q̄
1−F ((1−w)q0)
f((1−w)q0) = +∞ which further implies that:

lim
q0→ 1−δ

1−w q̄
M(q0) = +∞

and therefore that the derivative of the contractor’s payoff is positive (and infinite) at the lower
bound 1−δ

1−w q̄. The potential corner solution q∗0 = 1−δ
1−w q̄ is then ruled out and any global optimum

necessarily satisfies M(q∗0) = 0.

Last, we assume the contractor’s utility function is such that Ū is a CRRA utility function.
The first order condition (33) simplifies to:

MF (q∗0;w, γ) ≡ 1− F ((1− w)q∗0)

f((1− w)q∗0)
− (1− w)q∗0 ·K(w, γ) = 0 (34)

where K(w, γ) = 1−(1−w)1−γ

1−γ if γ 6= 1 and K(w, γ) = log(1 − w) if γ = 1. Note that K(0, γ) = 0

and ∂K(w,γ)
∂w = 1

(1−w)γ > 0, therefore K(w, γ) ≥ 0 for any pair (w, γ). Moreover 1−F (q)
f(q) is strictly

decreasing on ](1− δ)q̄, q̄[, then MF (·;w, γ) is strictly decreasing as well. Then Eq. (34) admits a
single solution on this interval. Overall, we obtain that Q∗0(p) is a singleton and does not depend
on p. Let q∗0 denote the global optimum.

We now are able to derive the following comparative statics on q∗0 from (34):

1. K(w, γ) is increasing in γ and then MF (q0;w, γ) is decreasing in γ for every q0. There-
fore, the optimal report q∗0 decreases with γ: the more risk averse firms are, the less they
overestimate their production.

2. Consider two distributions F1 and F2 (on the same support), with F1 less risky than F2

in the sense that ∀q ≤ q̄, f1(q)
1−F1(q) <

f2(q)
1−F2(q) . Then MF1(q0;w, γ) > MF2(q0;w, γ) for any

q0 ∈] 1−δ
1−w q̄,

1
1−w q̄[ (the interval where the optima are to be found), and consequently the

solution to MF1(q0;w, γ) = 0 is larger than the solution to MF2(q0;w, γ) = 0: if production
is less risky, then firms overestimate more their expected production.

3. Assuming γ ≥ 1, K(w, γ) is non-increasing in w, and therefore (1 − w)q0 · K(w, γ) is
strictly decreasing in w. In addition, since 1−F (q)

f(q) is decreasing on ](1− δ)q̄, q̄[, we also have
1−F ((1−w)q0)
f((1−w)q0) decreasing in w for q0 ∈] 1−δ

1−w q̄,
1

1−w q̄[. Then MF (q0;w, γ) is strictly decreasing
in w on the interval containing q∗0, and therefore the greater is w the greater is the solution
to (33): the larger the insurance range is, the more firms overestimate their production if
γ ≥ 1.
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