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Abstract

The 2021-2023 European energy crisis, triggered by the war in Ukraine, led to
broad policy interventions in energy markets. In contrast to the retail-side mea-
sures and public transfers implemented elsewhere, Spain and Portugal targeted the
wholesale electricity market through the so-called Iberian solution. We quantify
the distributional implications of the crisis and this market intervention on Span-
ish electricity firms and across consumer groups. We find that the crisis shifted
substantial wealth from consumers to generators, with regressive impacts among
consumers. Conversely, the policy’s relief was progressive, delivering larger gains

to lower-income groups.
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1 Introduction

Few instances in recent history have seen the price of an essential commodity — such
as energy — increase as much as tenfold within a short period. Triggered by the lead-
up to the war in Ukraine, the energy crisis that unfolded in Europe between 2021 and
2023 stands out as one such episode. It thus offers a unique opportunity to study the
economic consequences of a large and sudden shock to energy markets. In this paper, we
investigate the distributional consequences of this energy crisis and the subsequent policy
interventions designed to cushion the surge in electricity bills. We focus on the direct
impacts on electricity producers and consumers in the context of Spain.

While the macroeconomic consequences of energy crises — such as GDP losses, pro-
ductivity slowdowns, rising inflation and, as a consequence, tighter monetary policy —
are well documented (see Bachmann et al. (2024) and Krebs and Weber (2024), among
others), their distributional effects have received comparatively less attention.! Yet, one
cannot ignore the heterogeneous impacts across sectors, income strata, or regions. For ex-
ample, firms in energy-intensive sectors might suffer from reduced competitiveness when
faced with high energy costs, as emphasized in Draghi (2024)’s report. For households,
energy is a basic necessity, and price increases tend to disproportionately burden low-
income households that face tighter budget constraints and are less able to absorb or
adapt to higher energy costs (Ahlvik, Liski, and Makimattila, 2024; Ahlvik et al., 2025).
This exacerbates concerns related to energy poverty, which can have adverse physical and
mental health effects (Lee and Yuan, 2024; Bentleya et al., 2024), among others.

As a response to the energy crisis, several policies were implemented in Europe —
ranging from voluntary demand reduction incentives to market interventions — in order
to cushion the effects of rising energy costs (European Commission, 2025). The design of
these policies is crucial for their effectiveness in reducing energy bills without distorting
market efficiency or inducing adverse environmental consequences (Levell, O’Connell,
and Smith, 2025). Moreover, such policies frequently carry significant distributional
implications, as they influence how the economic burden and benefits are shared between
energy companies, consumers, and taxpayers. While heterogeneous impacts are expected,
estimates of their relative magnitudes are still scarce. In this paper, we help fill this gap
by leveraging the unique response from Spain and Portugal — the only countries in Europe

to address the energy crisis by intervening directly in their wholesale electricity market.?

!Bachmann et al. (2024) and Krebs and Weber (2024) study the context of Germany. They show that
the one-year GDP loss resulting from the energy crisis was comparable in magnitude to the short-run
output declines observed during the COVID-19 crisis in 2020 and the global financial crisis in 2008. In
addition, inflation surged and real wages fell more sharply in 2022 than in any other year in post-war
Germany. They also provide evidence of the lasting economic harm of the energy crisis, as reflected in
the sluggish recovery of the German economy following the energy shock.

2While Spain and Portugal had a unified response, sharing a well-connected electricity market, our anal-
yses focus on Spanish consumers and producers, due to data limitations.



Our insights could be helpful for the effective design of measures in response to future
energy crises.

Most European nations, other than Spain and Portugal, mainly relied on subsidies,
tax cuts, retail price caps, or direct public transfers to households and firms. While
these helped to weather the crisis, they entailed substantial fiscal costs ultimately borne
by taxpayers.®> Importantly, such measures left the profits of energy producers largely
untouched. Yet, one of the most significant distributional imbalances during the energy
crisis emerged at the level of electricity generation. As the President of the European
Commission noted: “Low-carbon energy sources are making... revenues they never dreamt
of... that do not reflect their production costs” (von der Leyen, 2022). This occurred
because surging gas prices drove up wholesale electricity prices, substantially increasing
the inframarginal rents of low-carbon producers (nuclear, hydro, and renewable energy
plants) — whose costs remained largely unchanged. As the preceding quote suggests, this
profit increase was largely perceived as a windfall.

The market intervention implemented by Spain and Portugal — the so-called Iberian
solution — was designed precisely to limit the pass-through of inflated gas prices to whole-
sale electricity prices, mitigating the increase in inframarginal rents, and thus reducing
energy costs for consumers without fiscal costs. As a result, the Iberian solution had dis-
tributional consequences both at the wholesale level — by altering the allocation of surplus
between electricity producers and consumers — and at the retail level, where the price
impacts varied across consumers depending on their consumption levels and patterns over
time. This paper quantifies both of these effects.

We begin by simulating counterfactual wholesale market outcomes under five dis-
tinct scenarios — including a no-crisis scenario and variations that help identify the effects
of the Iberian solution (which we refer to as the price intervention) and the accompa-
nying energy-saving measures. To build these scenarios, we estimate input prices in the
absence of the crisis (fossil fuel prices, carbon prices, and electricity prices in France),
and estimate counterfactual electricity demand using machine learning techniques. In-
terestingly, we find that the crisis led to a decline in electricity demand — driven more by
the implementation of non-price energy-saving measures, rather than by direct demand
response to rising energy prices.

Our simulations indicate that, due to the crisis, Spanish power plant earnings in-
creased by almost €50B between July 2021 and June 2023, i.e., a 250% increase, while

3In Europe, Ferdinandusse and Delgado-Téllez (2024) estimate that fiscal measures to support households
and firms in response to the energy price shock amounted to 1.8% of GDP in 2022 and 1.3% in 2023.
See also Sgaravatti et al. (2023).



their profits rose by €27B over the same period, i.e., a 224% increase.* Taken together,
the interventions reduced consumer payments by €4B (€1.6B from the price intervention
and €2.3B from the savings measures).

We then combine the simulated wholesale prices with hourly household electricity
consumption data at the zip code level to compute counterfactual electricity bills for
households across 8,390 zip codes in Spain. We find that, on average, the crisis increased
household electricity bills by €338 per year, equivalent to about 1% of their disposable
income. Without the interventions, this increase would have been €487 per year, given
that the measures reduced average annual bills by €149 (€81 due to the price intervention
and €56 due to the energy-saving measures), avoiding 30% of the bill increase that would
otherwise have occurred.

These averages, however, mask substantial heterogeneity across households. Using
data on weather, socio-demographics, and electricity consumption, we group zip codes
into six clusters with distinct consumption profiles. This approach helps us to identify the
factors driving the intensity of the crisis and policy intervention effects. Results suggest
that household income, as well as higher shares of electric heating or air conditioning,
are positively correlated with bill changes — consistent with these factors driving higher
electricity consumption during periods when crisis-level prices peaked and the policy
interventions were most effective.

We also uncover heterogeneity across (household-level) income quintiles by extrap-
olating the drivers of bill variation across zip codes. We find that the electricity price
shock had regressive effects. While higher-income households experienced larger abso-
lute increases in bills, lower-income households bore a greater burden relative to their
disposable income. Importantly, policy interventions helped mitigate these regressive im-
pacts. Although the monetary savings were larger for wealthier households in absolute
terms, the policy measures — particularly the price intervention — delivered proportionally

greater relief to lower-income groups, thus exhibiting progressive impacts.

Related Literature. This paper contributes to a growing literature emphasizing the
importance of equity in the design of energy and climate policies (see, for instance,
Deryugina, Fullerton, and Pizer (2019) for academic contributions; OECD (2024) for
the policy perspective; and Reguant, Fabra, and Wang (2025) and Borenstein, Sallee,
and Fowlie (2022) for analyses focused on the distributional consequences of electric-

ity pricing). As the energy transition accelerates and prices become more volatile due

4These figures are computed under the assumption that all power plants were remunerated at market prices
and should be interpreted as an upper bound on the actual effects due to two caveats. First, plants owned
by vertically integrated utilities may not have directly benefited from elevated wholesale prices due to
internal transfer pricing, but likely captured additional profits through their retail margins. Second,
certain regulated renewable power plants received fixed payments rather than full market remuneration,
although the share of such plants was already relatively small.



to climate-related shocks and decarbonization efforts, understanding the distributional
effects of alternative policy instruments becomes essential to ensure broad social support.

A number of recent papers have evaluated the support measures adopted by Euro-
pean governments to mitigate the impact of rising energy costs.® For example, the UK
government subsidized energy producers to maintain retail prices at a cap below market
levels. In their analysis, Fetzer (2014) find that, due to the positive correlation between
income and energy consumption, high-income households received higher bill reductions
in absolute terms. However, their data do not allow for an assessment of energy expendi-
tures as a share of income, a key metric for evaluating the progressivity or regressivity of
a policy (Borenstein, Sallee, and Fowlie, 2022). Under the Iberian solution, we show that
although high-income households experienced greater savings in absolute terms — con-
sistent with Fetzer (2014) — the relative benefit was greater for low-income households,
rendering the policy progressive.

Levell, O’Connell, and Smith (2025) also study the UK’s relief package and estimate
that, absent the intervention, average household welfare losses would have amounted to
6% of their income. They document significant demand reductions in response to price
increases, with an average elasticity of 0.31, and stronger responses among heavy energy
users. In contrast, our results attribute most of the demand reduction to non-price
energy-saving measures, which is consistent with findings in the German context (Behr,
Koveker, and Kiiciik, 2025).

Germany and the Netherlands implemented schemes that shielded consumers from
retail prices above a guaranteed threshold. Dertwinkel-Kalt and Wey (2025) and Haan
and Schinkel (2023) find that these measures weakened retail market competition, raised
retail prices, and increased fiscal costs for the government. Notably, because subsidies
were tied to baseline consumption levels, consumers still had incentives to reduce us-
age, underscoring the importance of policy design in balancing protection, conservation
incentives, and fiscal sustainability.

Unlike the UK, Germany, and the Netherlands — whose measures primarily involved
retail market interventions or direct transfers — the distinguishing feature of the Iberian
solution is that it targeted the generation segment without imposing fiscal costs. We are
aware of three other recent papers that have examined the effects of this intervention on
the Iberian electricity market. None of these have assessed distributional implications
at the wholesale or retail levels. Ruiz, Schult, and Wunder (2024) employ a synthetic
control approach and find that the policy reduced average spot prices by approximately
40% between July 2022 and June 2023. Similarly, by building a counterfactual supply, Lou
et al. (2025) estimate a 35.3% spot price reduction between June 2022 and February 2023.

5Relatedly, other work examines structural electricity market-design reforms intended to prevent a recur-
rence of such episodes. See Fabra (2023), Gerlagh, Liski, and Vehvilainen (2022) and Polo et al. (2023),
among others.



However, they also highlight an unintended consequence: the intervention led to a 19.2%
increase in gas consumption in the Iberian Peninsula, driven by rising exports, which in
turn contributed to higher carbon emissions. Finally, using Bayesian structural time series
models, Hidalgo-Pérez et al. (2024) find that the intervention reduced household prices
between 20% and 28%, accompanied by increased gas consumption and more exports to
France. Our estimates regarding the aggregate effects of the Iberian solution are broadly
consistent with these.

The remainder of the paper is organized as follows. Section 2 provides a detailed
overview of the energy crisis and the policy response implemented in Iberia. Section 3 ex-
amines the effects at the wholesale level by simulating electricity market outcomes under
counterfactual scenarios — with and without the crisis, and with and without the policy
interventions. Section 4 quantifies the distributional impacts on Spanish households and
investigates the channels driving changes in their electricity bills. Section 5 concludes.

Additional supporting material is provided in the Appendix.

2 The Energy Crisis and the Policy Response

Starting in January 2021, gas prices on European exchanges began to rise sharply
(Panel (a) in Figure 1). At the time, the underlying cause remained unclear: Gazprom,
the Russian state-owned gas company, had begun to reduce gas exports to Europe in
a strategic move to inflate prices ahead of the invasion of Ukraine (Keliauskaité et al.,
2024). By January 2022 — just one month before the invasion — European gas prices had
reached unprecedented levels, surpassing €200/MWh, a tenfold increase relative to the
pre-crisis average.® This escalation reflected mounting concerns that winter gas supplies
would be insufficient to avoid curtailments. The outbreak of the war further exacerbated
the situation. In the summer of 2022, gas prices soared to €300/MWh, prompting a
series of policy interventions that eventually helped ease market pressure. By the winter
of 2023, gas prices had declined but remained roughly twice their pre-crisis levels.”

The surge in gas prices was directly transmitted to wholesale electricity markets
(Panel (b) in Figure 1), where gas-fired power plants frequently set the marginal price.
This led to a sustained period of exceptionally high electricity prices. Additional factors
— such as severe heatwaves across Europe, low hydro and wind output, and widespread
outages in the French nuclear fleet — amplified the upward pressure on electricity prices,

contributing to multiple extreme price spikes.

6As shown in Figure 1 Panel (a), gas prices in the Iberian market remained slightly below those in the
TTF. This divergence reflects both the limited interconnection capacity between the Iberian Peninsula
and the rest of Europe, and the greater LNG regasification capacity along the Iberian coast.

"Kroger, Neuhoff, and Schwenen (2025) document that the price escalation caused a dramatic decline
in traded contract volumes, particularly in bilateral trading, and prompted a shift towards centralized
markets for liquidity provision.



Figure 1: Wholesale Gas and Electricity Prices in Europe
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(b) Wholesale electricity prices

Notes: Panel (a) shows the evolution of natural gas prices in the wholesale exchanges of
the Netherlands (TTF) and Iberia (MIBGAS). Panel (b) shows the evolution of electricity
prices in several European exchanges. In both figures, which span from September 2020
until November 2023, prices in Iberia are highlighted in red.

The energy crisis prompted European governments to adopt a range of price and
non-price measures aimed at cushioning the impact of rising energy bills on consumers.
On the one hand, the EU issued emergency rules requiring member states to implement
mandatory or voluntary energy-saving targets — such as reducing overall electricity con-
sumption by 10% and enforcing a minimum 5% reduction during peak hours (European
Commission, 2023). Governments also ran public campaigns to encourage energy-saving

behaviors, such as turning down heating/air conditioning, shifting usage outside of peak



hours, and adopting efficient practices in homes and businesses.

Regarding price measures, most governments relied on a combination of tax exemp-
tions, retail price caps, and targeted support for vulnerable groups.® Spain and Portugal,
as already mentioned, deviated from this standard approach by intervening directly in
the Iberian wholesale electricity market (MIBEL).

In June 2022, the European Commission authorized both countries to implement a
one-year mechanism designed to cap the input costs of fossil fuel power plants — commonly
referred to as the “Iberian Solution” or “Iberian Exception.” Under this mechanism, gas
and coal power plants were compensated for the difference between the cost of producing
one MWh of electricity under the actual market price of natural gas and an administra-
tively set cap, assuming an efficiency rate of 55% for converting gas into electricity.” The
cap started at €40/MWh for the first six months and subsequently increased by €5/MWh
each month, reaching €70/MWh by the end of the one-year period. This compensation
did not have a fiscal cost, as it was passed on to consumers through a surcharge on their
electricity bills.°

The primary objective of the mechanism was to incentivize gas- and coal-fired plants
— often the price-setting market units — to internalize the subsidy in their bids.!' This
would lower wholesale electricity prices, thereby reducing the inframarginal rents of pro-
ducers such as nuclear, hydro, and renewables, which were not exposed to the increase in
fuel costs. As illustrated in Panel (b) of Figure 1, the Iberian Solution proved effective
in decoupling electricity prices from gas prices, creating a visible wedge between Iberian
wholesale electricity prices and those in the rest of continental Europe. This, in turn,
allowed Spain to weather the energy crisis more effectively than many other EU countries,
with the Iberian Solution contributing to significantly reducing its inflation rate (Roldén,
Comajuncosa, and Hidalgo, 2023; Ruiz, Schult, and Wunder, 2024).

The implementation of the Iberian Solution sparked controversy within the Euro-
pean Union. Countries such as Germany and the Netherlands criticized the temporary
price cap, arguing that it undermined the integrity of the EU’s internal electricity market
and risked distorting cross-border competition. A key concern was that lower Iberian
electricity prices would spur exports to France, saturating interconnection capacity and

effectively subsidizing French consumers. Analysts also warned that the cap could lead

8 According to Sgaravatti et al. (2023), the price measures amounted to cumulative fiscal expenditures of
almost €651 billion across the EU between September 2021 and June 2023.

9Gince all thermal plants, regardless of their actual efficiency rates or technology, received the same
subsidy, the merit order between them was not distorted.

108pecifically, subsidies to thermal generators were financed in part by higher congestion rents on the
France-Spain interconnector arising from the widened price spread. The remainder was allocated pro
rata across demand exposed to wholesale prices — including customers on the default real-time tariff and
fixed-price customers whose contracts had been renewed after the intervention — via a per-kWh surcharge
added to electricity bills.

"1 The price of coal also increased during the energy crisis. The main purpose of subsidizing coal generation
was to avoid distortions in the cost ranking across the price-setting plants.



to increased gas-fired generation and higher gas consumption in the Iberian Peninsula,
counteracting EU-wide efforts to reduce fossil fuel dependence and emissions. Finally,
critics noted that the price relief was not targeted by income level, raising concerns that
low-income households would receive less support.!?

This paper offers a rigorous quantification of the distributional effects of the energy
crisis and the Iberian market intervention on Spanish electricity consumers, analyzing

impacts at both the wholesale (Section 3) and retail levels (Section 4).

3 Wholesale Market Impacts

3.1 Simulating the wholesale electricity market

Our first step is to conduct simulations of the Spanish wholesale electricity market
under counterfactual scenarios for electricity supply and demand — with and without
the energy crisis, and with and without the price and non-price policy interventions.
Simulations are based on a model originally developed by de Frutos and Fabra (2012),
assuming competitive supply.'> All simulations are performed at the hourly level over
the 17,520 hours spanning the sample period from 1% July 2021 to 30" June 2023.

To model the supply side, we draw on granular data describing the technical char-
acteristics of actual power plants operating in the Spanish electricity market — including
their capacity, thermal efficiency, and emissions rates (Global Energy Monitor, 2025).
We also incorporate the observed hourly availability of renewable resources (REE, 2024),
which remains unaffected by the crisis or any policy interventions. These inputs are
combined with daily prices for fossil fuels and EU-ETS CO, allowances, using either the
realized values (Bloomberg, 2025) or counterfactual values in the absence of the crisis.
The methods used to construct gas and CO, prices in the No-Energy-Crisis scenario are
described in detail below.

Equipped with this information, we estimate marginal generation costs following
standard methodologies (see, for example, Fabra and Imelda, 2023). For renewable gen-
eration, marginal costs are assumed to be equal to operation and maintenance (O&M)
costs. For a thermal plant ¢, marginal costs in period ¢ also depend on fossil fuel prices

as follows:
- p{ + Ttﬁf
€;

+ om;,

Cit

where f denotes the fossil fuel used by the power plant, either gas or coal, f = {G, C},

p{ denotes its price in period ¢ and ef denotes its CO, emission factor; 7, is the CO4 price

12See Corbeau, Farfan, and Orozco (2023) and Patel (2022) for a summary of these critics.

13Under the assumption of strategic bidding (modeled following the framework in de Frutos and Fabra
(2012)), the simulation results remain quantitatively similar. Simulation results are available upon
request.



in period t; e; is the plant-specific efficiency rate in converting fuel into electricity; and
om; stands for operation and maintenance costs.

The price intervention mechanism is binding when the gas price pf exceeds the
reference price pf. In such a case, all thermal plants receive a per-unit subsidy for
electricity generated in period t, defined as:

i —f

St = )

0.55

where 0.55 is the benchmark thermal efficiency.

Accordingly, the plant’s marginal cost net of the subsidy becomes:

R f G !
Ty€
Cit — St = By + <p—t P > + + om,;.

0.55 e; 0.95 €;

Importantly, the intervention preserves the marginal cost ranking, or merit order, among
generating units. Only gas-fired plants operating at the reference efficiency of 0.55 exhibit
a net marginal cost equal to the cap plus the emissions costs. By contrast, coal plants
and gas plants with lower efficiency levels display net marginal costs that exceed that
level, consistent with their underlying cost characteristics.

To construct the industry’s hourly competitive supply curve, we use either the es-
timated marginal costs in the absence of the market intervention, or the marginal costs
net of the subsidy when the intervention is in place.

To model the demand side, we use either the realized hourly demand values (REE,
2024) or one of two counterfactual predictions generated using machine learning tech-
niques: (i) demand in the absence of the crisis, and (ii) demand assuming that the crisis
occurred so that higher prices triggered some demand response, but excluding the effects
from non-price energy-saving measures. The methods used to construct these counter-
factual scenarios are detailed below.

Finally, since the Iberian electricity market is interconnected with France, French
electricity prices influence supply and demand conditions in Iberia, depending on whether
France is importing from or exporting to the region.'* Below, we describe the methodol-
ogy used to compute French electricity prices under the counterfactual scenario without
the energy crisis.

Matching actual or counterfactual market demand with actual or counterfactual
supply enables us to determine the competitive hourly price and production allocation

across plants in the Spanish electricity market under our five scenarios, as described next.

14The Spanish market is closely linked to the Portuguese market, together forming the Iberian electricity
market. This interconnection is rarely congested, resulting in nearly identical electricity prices in Spain
and Portugal. Furthermore, both markets have been similarly affected by the crisis, as they are influenced
by natural gas prices in the Iberian Peninsula and both have been subject to the Iberian Solution. Hence,
for the purposes of this analysis, we assume that the Spanish and Portuguese markets are always coupled.



Scenarios. Table 1 summarizes the assumptions on the supply and demand variables
used to construct our scenarios. The first is the Factual scenario, which serves as our
benchmark. It uses the realized values for demand, gas, CO,, and French electricity
prices, under the existing market interventions, including the energy-saving measures
and price cap on gas.!'®

The other four scenarios are counterfactual. The No-Energy-Crisis scenario assumes
that the energy crisis did not occur (i.e., both demand and supply would have followed
paths similar to those observed prior to the crisis). Comparing it to the Factual scenario
allows us to evaluate the energy-crisis effect.

The Business-as-Usual (BaU) scenario assumes that the crisis happened, but neither
energy-saving measures nor price interventions were implemented. Comparing it with the
Factual scenario allows us to quantify the combined effects of both interventions, which we
call the full-intervention effect. The Savings-Intervention-Only scenario removes the price
control measure from gas prices, isolating the price-intervention effect by comparison
with the Factual scenario. Conversely, the Price-Intervention-Only scenario assumes
demand without energy-saving measures, enabling us to separately quantify the savings-
intervention effect.*

Below, we outline the methodology used to construct the counterfactual inputs for

the relevant supply and demand variables used in the simulations.!”

Counterfactual gas prices. We assume that, in the absence of the crisis, gas prices
would have likely remained at their average pre-crisis levels. Specifically, we calculate the
average over the 2017-2019 period, excluding 2020 and 2021 due to significant deviations
from long-term trends caused by the COVID-19 pandemic. To account for seasonal
variation, we compute twelve month-specific average gas prices, one for each calendar

month.

Counterfactual CO, prices. An increase in gas prices improves the relative compet-
itiveness of coal-fired power plants, thereby increasing the demand for CO, allowances
and exerting upward pressure on COs prices. Accordingly, in a scenario without elevated
gas prices, COy prices would have remained lower. To construct the counterfactual CO,

price in the absence of the crisis, we remove the component of the CO, price that is

5 Note that the Factual scenario contains simulated electricity prices — based on realized demand and
input values — rather than the actual realized prices. This approach ensures that any potential biases in
our simulations cancel out when comparing across scenarios. Nevertheless, taking the realized electricity
prices as the baseline scenario would not materially affect our conclusions, since the simulated prices
closely track the observed ones.

6Due to the interaction between the price intervention and the energy savings intervention, the sum of the
price-intervention effect and the savings-intervention effect need not be equal to the full-intervention
effect. In practice, we find this difference to be small.

17 Appendixes B and C contain further details on the methods.
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attributable to the gas price increase, while preserving the underlying upward trend as-
sociated with structural reforms to the EU-ETS — particularly, the launch of Phase IV in
2021 — that would have taken place without the crisis.

To this end, we estimate a linear model capturing the relationship between natural
gas prices (TTF) and COq prices (EU-ETS allowances) over the 2015-2023 period, al-
lowing for distinct time trends across different EU-ETS phases.'® Using this model, we
predict COs prices under the assumption that natural gas prices would have followed the
pre-crisis trends described above. As seen in Figure 2, CO, prices would have increased

even without the energy crisis, but not as much.

Figure 2: Gas and CO; prices — Historic and No-FEnergy-Crisis counterfactual
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Notes: This figure shows the evolution of the realized TTF natural gas prices and COg
prices (solid lines) versus the estimated counterfactual prices in the absence of the crisis
(dashed line, from July 2021).

Counterfactual French electricity prices. To construct counterfactual French elec-
tricity prices, we first estimate a regression model using historical data from 2015 to
2023. The model explains the French electricity price as a function of the natural gas
price (TTF), the COs price, the French electricity residual demand (net of renewable and
nuclear production), and time-fixed effects.!? Using this model, we predict French elec-
tricity prices under the counterfactual scenario where natural gas and COs prices reflect
the hypothetical No-Energy-Crisis conditions. Figure 3 plots the resulting prices, which

follow a similar trend as the pre-crisis prices.

Counterfactual wholesale electricity demand. Aggregate electricity demand is an-

other key input for our simulations of the Spanish electricity market. Naturally, in the

18The model (equation B.1) and the estimation results (Table B.1) are reported in Appendix.

9The regression results are summarized in Table B.1 in the Appendix. The high value of the R? = 0.9
shows that a high proportion of the price variation is explained by the model. Yet, note that we do not
account for changes in electricity demand in neighboring countries that may have occurred in reaction
to the crisis, neither do we account for policy measures implemented outside the Iberian market.
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Figure 3: French electricity prices — Historic and No-FEnergy-Crisis counterfactual
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Notes: This figure shows the evolution of the realized French electricity prices (solid line)

versus the estimated counterfactual prices in the absence of the crisis (dashed line).

absence of the crisis, one would expect higher electricity demand than observed, both due
to lower electricity prices and the absence of the energy-saving measures put in place by
the government during the crisis.?

To predict this counterfactual demand, we train machine learning algorithms. Prior
literature has used similar machine learning strategies to analyze, for example, the impact
of the COVID-19 pandemic on electricity markets (e.g., Graf, Quaglia, and Wolak, 2021;
Fabra, Lacuesta, and Souza, 2022; Benatia and Gingras, 2023). These studies have
shown that accurate predictions can be obtained through the implementation of flexible
algorithms with high-dimensional (preferably hourly) demand data.

We caveat that, by nature, the true counterfactual can never be observed. The
validity of our predictions therefore relies on two key assumptions: (i) that the No-Energy-
Crisis counterfactual aggregate electricity demand is driven by a “stable” regression
function that we can estimate; and (ii) that the variables used to predict counterfactual
demand are independent of the energy crisis itself (more details in Fabra, Lacuesta, and
Souza, 2022). In Appendix C.1 we formalize these assumptions, based on the Neyman-
Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974).

The key idea from our approach is to use pre-crisis data to learn patterns that
would be expected for the unobserved counterfactual demand in case the crisis had not

happened. We therefore train machine learning algorithms using hourly electricity de-

20Tn the case of Spain, in May 2022, a regulation stipulated that public buildings could not be cooled below
27°C in the warm season or heated above 19°C in the cold season (BOE, 2022b). Similar measures were
extended to commercial establishments in August of the same year (BOE, 2022a).
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mand data in Spain from 2015 to 2020.2" The best-performing ML algorithm is selected
based on cross-validation strategies that allow us to assess out-of-sample prediction accu-
racy (details in Appendix C.3). The algorithm with the lowest root mean squared error
(RMSE) was a variant of gradient-boosted regression trees (more details in Appendix C.2
and in Chen and Guestrin, 2016).

Our algorithms incorporate the following predictor variables: daily national average
(population weighted) and squared average of minimum, maximum, and median surface
temperatures; daily temperatures for the 50 provinces of Peninsular Spain; daily national
average (population weighted) and squared average of sunshine hours and average wind
speeds; daily sunshine hours and average wind speeds for the 5 most populous provinces
(Madrid, Barcelona, Valencia, Seville, and Alicante); day-ahead hourly forecasts of wind
electricity generation (and the logged version of that variable); hour of day, day of week,
week of year, month of year, quarter of year and year fixed effects; holiday indicators;
a daily trend; monthly nationwide road traffic fatalities; daily Dutch TTF natural gas
prices and daily EU-ETS COs prices (as well as lagl, lag7, lagl4, lag30, and lag60 versions
of those).??

The latter three variables warrant further explanation. The response to the COVID-
19 pandemic — through lockdowns and other restrictions — triggered a significant shock to
electricity consumption. While this period only partially overlaps with the energy crisis,
it substantially affected much of the data used to train the algorithms. Traffic fatalities
are included as a proxy to flexibly capture reduced urban mobility due to COVID-19
lockdowns and restrictions. Even though the relationship between urban mobility and
traffic fatalities is complex (e.g., Albalate and Fageda, 2021), in Appendix Figure C.3
we show that aggregate road fatalities in Spain were somewhat stable from 2015 to early
2020 (excluding seasonality patterns), but then reduced substantially from March to
June 2020, and again during the end of 2020/beginning of 2021 (when a second state
of emergency was in effect). We prefer this measure over economic indicators (such as
GDP) that might also have been impacted by the energy crisis itself.?

Natural gas and CO, prices were included as proxies to capture demand elasticity

210ur preferred specification is trained with data also from 2020, when strict lockdown measures were in
place due to COVID-19. We argue that data from 2020 can be useful to capture general trends in the
relationship between economic activity and electricity demand, even if demand in that year was much
lower than usual. Regardless, prediction results are similar if we train the algorithms with data only up
to 2019, as shown in Appendix C.3.

22 Aggregate electricity demand and day-ahead wind generation forecasts for Spain are publicly available
through the Spanish System Operator website (REE, 2024). Weather data was obtained through the
State Meteorological Agency’s AP (AEMET, 2024). Traffic fatality data are available through DGT and
EpData (2024). Daily Dutch TTF Natural Gas prices were obtained from Bloomberg (2024). Historical
EU-ETS COs prices were provided by SENDECO2 (2024).

Z30ur choice is also justified by evidence that driving behavior is quite inelastic to energy price changes
in the short run (e.g., Hughes, Knittel, and Sperling, 2008). We also considered including a more direct
measure of aggregate traffic conditions in Spain over time (such as travelers per month). Unfortunately,
such a measure is not reliably available during the whole sample period (2015 to 2023).
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to electricity prices.?® We do not use wholesale electricity prices from the Spanish market
directly as predictors because they are themselves influenced by electricity demand in
Spain, which raises a simultaneity issue. Instead, we use the TTF natural gas price and
the EU-ETS CO; price as proxies. These Europe-wide prices capture the impact of the
crisis on Spanish electricity prices while being less likely to be significantly affected by
the Spanish electricity demand.

To construct the demand that is used to simulate the Business-as-Usual and Price-
Intervention-Only scenarios — where the crisis occurs but energy savings are not imple-
mented — we simulate counterfactual electricity demand using the actual TTF and CO,
prices observed during the crisis (labeled “real TTF and CO, prices” in Figure 4). To
construct the demand that is used to simulate the No-Energy-Crisis scenario, we use the
counterfactual TTF and COs prices (labeled “stable TTF and CO, prices” in Figure 4).
This approach allows us to capture the limited but non-zero demand response to energy
prices during the crisis.?’

Figure 4 depicts the time series (30-day rolling averages) of our counterfactual pre-
dictions for aggregate electricity demand in Spain. The predictions in red use actual gas
and COy prices, while the predictions in blue are for the scenario with counterfactual
prices. The two predicted curves look similar, which may be attributed to a relatively
low short-term price elasticity. Realized demand is depicted by the black curve. There
is substantial overlap between realized and predicted demand for most of 2021. Discrep-
ancies start to appear towards the end of 2021, when electricity and gas prices started
to soar. Deviations are even more prominent in 2022 and 2023. We find that electricity
demand would have been significantly higher in the absence of the crisis.?® For instance,
actual demand in May 2023 was nearly 11% lower than the counterfactual predictions,
despite the fact that wholesale gas and electricity prices in Spain had begun to stabilize
by that time. These results suggest that the energy crisis triggered strong and persistent
reductions in electricity consumption. Such effects cannot be ignored when simulating

the wholesale market impacts.

24Own-price elasticity of electricity demand is typically low, especially in the short-run (e.g., Labandeira,
Labeaga, and Lépez-Otero, 2017; Deryugina, MacKay, and Reif, 2020). Rather than ignoring this channel
for our counterfactual predictions, we attempt to incorporate it through variations of natural gas and
CO prices.

25In the simulations, we use the same counterfactual demand regardless of whether the price intervention
was in place, although it could slightly affect demand via price elasticity. Since the overall demand
response to prices is very small, we consider the omission negligible.

26In the context of the Italian gas market, Polo and Roccuzzo (2025) also find a significant drop in demand,
but they attribute it mostly to an increase in price elasticity.
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Figure 4: Actual versus predicted aggregate electricity demand
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Notes: This figure illustrates the historical and predicted counterfactual Spanish aggregate electricity
demand from Jan. 2019 to Dec. 2023. Predictions in red use real COs prices and real TTF natural
gas prices. Predictions in blue use COs and TTF price projections assuming that the crisis had not
happened.

3.2 Results from the wholesale market simulations

Combining the elements described above, we have all the inputs required to simulate
the Spanish wholesale electricity market under our five scenarios of interest.?” In the

following sub-sections, we summarize the key results.

Simulated electricity market prices across scenarios. Figure 5 plots the time
series of the simulated prices, comparing factual prices against the simulated electricity
prices in all counterfactual scenarios, and Table 2 reports the average electricity prices
under each scenario. As can be seen, the energy crisis had a significant impact on prices,
which was only partially offset by the price intervention. In contrast, while the savings
measures were effective in curbing consumption, they had little to no downward impact
on prices.

During the second half of 2021, gas prices began to rise, driving electricity prices

to an average of €163/MWh. This represents a 246% increase compared to the coun-

27To assess the validity of the electricity market model, Figure A.1 in the Appendix compares the daily
averages of the simulated prices under the Factual scenario with actual market prices. As shown, the
model accurately captures price variations, providing confidence in its use for simulating counterfactual
scenarios. In any case, when assessing the impact of the energy crisis and the policy responses, we
compare the counterfactual scenarios against the simulated Factual scenario, ensuring that any potential
biases cancels out across scenarios.
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terfactual electricity prices in the absence of the energy crisis.?® The surge in gas prices
continued throughout 2022, accompanied by extreme volatility. The peak occurred in
March 2022, when gas prices soared to a record high of over €240/MWh, pushing elec-
tricity prices above €500/MWh. The price intervention, which became effective on June
14, mitigated the pass-through of gas price spikes to electricity prices from that point on-
ward. In the second half of 2022, this intervention reduced the average wholesale market
price from €237/ MWh (under the Savings-Intervention-Only scenario) to €116/ MWh.
During 2023, gas prices remained relatively high in the first two months but then began
to decline rapidly. This, combined with the increase in the trigger gas price for the inter-
vention, meant that the Iberian Solution was rarely implemented over this time. Indeed,
during the first half of 2023, the average price without the intervention (€97/MWh) was
very close to the factual price (€93/MWh). The green curve in Figure 5, representing
the Savings-Intervention-Only scenario, reveals that the energy-saving measures had a
limited impact on market prices. The small differences observed are primarily due to vari-
ations in the marginal costs of different gas plants, which continued to be the price-setting

technology throughout the period.

Table 2: Demand-weighted Average Prices across Scenarios (€/MWh)

Scenario 2021 (Q3-4) 2022 (Q1-2) 2022 (Q3-4) 2023 (Q1-2)
Factual 163 200 116 93
Business as Usual 163 213 241 97
Savings Interv. Only 163 212 237 95
Price Interv. Only - 201 118 95
No Energy Crisis 66 68 71 72

Notes: This table reports the simulated demand-weighted average prices in the Spanish wholesale

market during each period under each scenario. The price intervention took place in 2022.

Distributional effects between consumers and electricity generators. The price
effects summarized in Figure 5 led to substantial wealth transfers from consumers to
electricity generators. Aggregate effects on power plants’ earnings, costs, and profits are
summarized in Table 3.

Relative to the No-Energy-Crisis scenario, earnings by Spanish power plants in-
creased by €49,287M over the two-year period (July 2021 to June 2023), representing a
250% increase. The surge in the costs of marginal gas-fired plants, which were passed

through to wholesale electricity prices, led to a 224% increase in firm profits (€27,090M),

28Note that during this period, no price intervention was in place. As a result, the Factual scenario and
the Savings-Intervention-Only scenario yield the same wholesale electricity prices.
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Figure 5: Simulated Wholesale Electricity Prices across Scenarios
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Notes: This figure reports the daily demand-weighted averages of the simulated electricity wholesale
prices from July 2021 until the end of June 2023 under the various scenarios. The market intervention
(Iberian Solution) was implemented in June 2022. The Factual and the Price-Intervention-Only scenarios
overlap until mid 2022 (when the price intervention had not yet been implemented) and during the
first half of 2023 (when the reference gas price was not binding). The Business-as-Usual and Savings-
Intervention-Only scenarios overlap on most dates, given that the price impacts of the saving measures

were limited.

compared to the No-FEnergy-Crisis scenario. Profit increases were primarily driven by the
growth in inframarginal rents earned by nuclear, hydro, and renewable energy resources.?
Since their costs remained unchanged during the crisis, yet their output prices more than
doubled — even after the market intervention — these generators benefited significantly
from the crisis, at the expense of consumers. The overall increase in costs, €22,189M, is
mainly explained by the gas price increase caused by the crisis.

The price and savings interventions helped curb wealth transfers from consumers to
firms by partially reducing inframarginal rents. Had the interventions not been imple-
mented, the crisis would have increased firm earnings by 262% — instead of 250% — and
the increase in firms’ profits would have reached 282% — instead of 224%. After factor-
ing in the subsidies to gas- and coal-fired plants (paid by consumers in their electricity

bills), consumers collectively saved €1,605M due to the price intervention and €2,346M

29A fraction of renewable energy assets receives regulated payments — specifically, they earn the market
price supplemented by a regulated top-up. This top-up is revised every two years, based on the market
revenues earned during the preceding regulatory period. As a result, the excess earnings accrued during
the energy crisis led to a reduction in regulated payments in the subsequent period. This adjustment is
not computed in our estimated effects.
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from the savings measures. Together, these interventions reduced consumer payments by
€4,052M. In sum, while the interventions successfully softened the impact of the crisis,

they only partially mitigated its effects.

Table 3: Policy Intervention and Crisis Effects on Earnings, Costs, and Profits
(M€, July 2021-July 2023)

Earnings Costs Profits

Energy-Crisis effect 49,287 22,189 27,090
Full-Intervention effect -4,052 8,085 -12,651
Price-Intervention effect -1,605 9,721 -11,344

Savings-Intervention effect -2,346 -1,480 -861

Notes: This table reports the changes in earnings by power generators
located in Spain, their production costs, and their profits due to the policy
interventions and the energy crisis. Payments and Costs include the gas

compensation in the Factual and Price-Intervention-Only scenarios.

Effects on other variables of interest. The electricity price effects of the interven-
tions also triggered an increase in exports, which in turn led to higher thermal production
and associated emissions in Spain. As shown in Table 4, Spain increased its exports by
120% due to the price intervention. Had only the savings measures been implemented,
the exports would have increased by 36% relative to the Factual scenario due to the slight
price reduction. The combined effect of both policies was to increase exports by 162%.
The increase in exports had to be met with an increase in thermal generation, which
contributed to higher emissions even though the savings measures helped mitigate this
effect. More specifically, the price intervention increased emissions by 23%, while the
energy savings measures allowed for a 6% reduction. The combined effect of both policies

was to increase the power-sector carbon emissions by 18%.3°

4 Retail Market Impacts

Thus far, our analysis has focused on the aggregate wealth transfers from consumers
to electricity producers induced by the energy crisis, along with the mitigating role of
policy interventions. In this section, by analyzing retail market impacts, we explore the

heterogeneity across households and provide further distributional insights.

30However, it is important to note that the increase in emissions in Spain might have been partially offset
by a reduction in emissions in France, to the extent that Spanish electricity exports helped reduce gas-
fired generation in France. Since carbon is a global pollutant, only the net cross-border effect should
matter.
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Table 4: Policy Intervention and Crisis Effects on Imports, Exports, Thermal
Generation, and Demand (%, July 2021-July 2023)

Thermal CcO2
Imp-Exp Generation Emissions Demand
Energy-Crisis Effect -140.7 18.4 20.7 -4.8
Full-Intervention Effect -161.8 23.8 17.8 -4.2
Price-Intervention Effect -120.5 28.6 22.6 0.0
Savings-Intervention Effect -36.1 -6.0 -5.8 -4.2

Notes: This table reports the changes in percentage terms in the trade balance (imports-exports), thermal
generation, carbon emissions, and total demand in Spain due to the crisis and the policy interventions.

Note that Demand is equal to imports-exports plus in-home generation.

4.1 Background and data

We begin by constructing a database of residential electricity consumption at the
zip code level. This dataset is then merged with detailed characteristics of each zip code,
as well as socio-demographic attributes of the households residing within them.?!

Hourly residential electricity consumption data at the zip code level has been pro-
vided by Datadis (2023). After restricting to continental Spain and filtering out missing
data and outliers, we are left with 8,390 x 17,520 zip code-by-hour observations, covering
the period from July 2021 until June 2023 and roughly 16.3 million households (more
than 90% of the population of peninsular Spain). Besides, using the total number of
resident households, we compute the average household’s hourly electricity consumption
in each zip code.??

We merge the demand data with demographic characteristics, also at the zip code
level, compiled by MB-Research (2023) based on information from the Spanish National
Statistics Institute (INE) and Eurostat. This includes total population, total number of
households, average household size, average purchasing power (€/pc), and the number
of households in each national-level income quintile, for the year 2017.3

In addition, we obtain data on the share of households equipped with electric heating
and air conditioning, based on the 2021 survey from INE (2023). These shares are
reported at the province level for all provinces, and at the municipality level for provincial

capitals and municipalities with more than 50,000 inhabitants. Therefore, we are able to

31We restrict our analysis to continental Spain, excluding the Balearic Islands, the Canary Islands, Ceuta,
and Melilla, where specific electricity market regulations apply.

32We also know the number of electricity contracts registered in each zip code, which typically exceeds the
number of resident households. In some zip codes, the discrepancy can be large, explained mostly by a
large number of second homes. For this reason, we prefer to consider the number of resident households
in each zip code and we exclude those where the discrepancy with the number of contracts is too large.

33Income quintile thresholds are defined using the full Spanish population. The dataset then reports, for
each zip code, the number of households belonging to each quintile.
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compute equipment shares separately for these cities and for the remaining areas within
each province.

We classify zip codes into “cities”, “towns and semi-dense areas” and “rural areas”
following Dijkstra et al. (2021). Finally, we obtained weather data from AEMET (2024),
consisting of hourly observations for hundreds of stations located across Spain. For our
models to predict aggregate counterfactual low voltage electricity demand (more details in
subsection 4.2 below), we aggregate weather data to the national level, using population-
weighted averages. We also separately include measurements from the five most populous
provinces (Madrid, Barcelona, Valencia, Seville, and Alicante). For the clustering algo-
rithm described in subsection 4.3.1, we match hourly zip code-level residential electricity

demand with average weather observations at the province level.

4.2 Computing household electricity bills

To assess the impact of the energy crisis and the associated policy interventions
on households, we estimate electricity bills at the zip code level under each of the five
simulated scenarios. We then compute bill changes across scenarios to quantify four
distinct effects: the full-intervention effect, the savings-intervention effect, the price-

intervention effect, and the energy-crisis effect.®*

Counterfactual retail prices for households. Household electricity bills are com-
puted by assuming that retail prices are equal to the simulated wholesale electricity prices
obtained in Section 3, augmented by network charges, taxes, and other components typ-
ically included in household bills. This assumption is motivated by the fact that a large
share of Spanish households are exposed to real-time pricing, where retail prices closely
track wholesale market prices (Fabra et al., 2021). The remaining households typically
purchase electricity through fixed-price contracts negotiated in the retail market, which
are usually set for one year. Empirical evidence suggests that these fixed-price contracts
adjust to wholesale price changes upon renewal, thereby reflecting the crisis-induced price
increases over time.3

Two clarifications are in order. First, in both the Factual and Price-Intervention-
Only scenarios, household bills include the observed per-kWh surcharge used to finance
subsidies to thermal generators. Second, we abstract from any other tax changes that
occurred during our sample period, as our focus is on bill variations due to the crisis and

market interventions.

34 Although we do not offer a formal utilitarian assessment of these outcomes, it is worth emphasizing that
the bill effects are likely to be more relevant for low-income households, who often face tighter budget
constraints. Given that electricity expenses comprise a larger portion of their total spending, and their
consumption is primarily focused on essential needs, the marginal utility of income in this context is
expected to be higher for low-income households.

35Gee Figure A.2 in the Appendix.
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Counterfactual demand for households. Our simulations for household bill impacts
take into account the fact that, as described in Section 3.1, electricity demand in Spain
was affected by price and non-price interventions. To do so, we predict households’
counterfactual demand in the absence of the crisis with machine learning techniques
analogous to those used in Section 3.1. The zip code-level data described in Section 4.1
is not available for years prior to 2021, such that it cannot be used for this exercise.
Instead, we use the aggregate “low voltage” hourly electricity demand made available by
REE (2024) as the outcome variable. This can be considered as a proxy for residential
demand, even though small commercial establishments may be included in this category.®
The predictor variables are the same as described at the end of Section 3.1. We also
perform the same tuning and cross-validation steps (validation results are described in
Appendix C.4).

Our counterfactual predictions are depicted in Figure 6. The blue curve is for pre-
dictions using stable TTF and CO; prices. Comparison with the red curve (using real
TTF/COy prices) suggests that short-term residential demand is somewhat inelastic.
Observed historic consumption (in black) is generally lower than our counterfactual pre-
dictions, especially from the second half of 2022 onward. Differences at the end of 2021
may also be attributed to the salience effects of the crisis, as the stark price increases
were already frequently reported in the news. We also note some slight discrepancies at
the beginning of 2021, which may be attributed to COVID-19 containment measures that
were still in place during that period.?”

We then construct counterfactual consumption specific to each zip code based on
these aggregate low voltage demand counterfactuals. For each hour, we compute the
percent reduction in consumption corresponding to the difference between factual and
predicted counterfactual low voltage demand. We then apply those percent reductions to
the consumption data at the zip code level. Consistently with the assumptions presented
in Table 1, we consider the counterfactual demand with real TTF and CO, prices for the
BaU and Price-Intervention-Only scenarios, and we consider the counterfactual demand
with stable TTF and CO, prices in the case of the No-FEnergy-Crisis scenario.

With this procedure, we assume that residential electricity consumption decreases
homogeneously across zip codes (in proportion to observed consumption). In particular,
we assume away heterogeneous responses to the crisis across income groups. This may
introduce some bias. However, a survey of 5,000 Spanish households conducted during
our study period suggests limited discrepancies between social classes in their stated
sensitivity to changes in electricity prices (see Table A.3). If anything, low-income house-
holds seemed to be less aware or less responsive. Therefore, any potential biases from

our homogeneity assumption would most likely be in the direction of underestimating bill

36We use the “E0” category, which corresponds to consumption at voltage lower than one kV.
3"The official State of Emergency due to COVID-19 was still effective until 9th of May, 2021 (BOE, 2020).
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Figure 6: Actual versus predicted low voltage electricity demand
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Notes: This figure illustrates the historical and predicted counterfactual “low voltage” electricity demand
in Spain from Jan. 2019 to Dec. 2023. Predictions in red use real COy prices and real TTF natural
gas prices. Predictions in blue use COs and TTF price projections assuming that the crisis had not
happened.

increases for the least wealthy households.

It is important to note, however, that bill impacts can vary substantially between zip
codes, even with a homogeneous decrease in consumption. This is because our approach
still accommodates high-frequency price changes, as shown in Figure 5, which affect
households differently depending on their consumption patterns over time. We expand

on this point in the sub-section below.

23



4.3 Distributional implications of the energy crisis and policy

interventions

We begin by illustrating the heterogeneous price impacts over time. Figure 7,
Panel (a), displays the evolution of retail electricity prices under the energy crisis and the
price intervention, broken down by hour of the day (left) and by week of the year (right).
Clear intraday patterns emerge. For example, price increases are mitigated during sunny
hours due to the availability of solar generation. In contrast, prices are most strongly
affected by the energy crisis during the winter months, as evident in the right-hand side
of the figure. Conversely, the price intervention appears to have been more effective in
suppressing prices during the summer.?

The total impact of these price changes on household electricity bills depends on
consumption patterns, which vary substantially across zip codes. Figure 7, Panel (b),
illustrates the consumption patterns of two zip codes: Elche (Alicante), located in a sunny
region on the Mediterranean coast, and Ponferrada (Ledén), located in a mountainous area
in northern Spain. The substantially higher electricity consumption in Elche is largely
driven by increased daytime usage during the summer months, primarily due to the more
widespread and intensive use of air conditioning relative to Ponferrada. In this case,
the within-day and across-month differences in consumption profiles between Elche and
Ponferrada work in favor of Elche, which was — in per-unit terms — relatively less affected
by the energy crisis and benefited relatively more from the price intervention (as can be
seen from the lower figures in Figure 7, Panel (a)).

Our detailed consumption data at the zip code level allows for multiple comparisons
analogous to those presented above. To deal with the high dimensionality of the data,
we group zip codes based on the similarity of their average consumption profiles using
k-means clustering, as described in the following section. This method allows us to strike

a balance between capturing heterogeneity and maintaining interpretability.

38This pattern was also visible in Figure 5, when comparing wholesale prices under the Factual and BaU
scenarios.
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Figure 7: Illustration of the heterogeneous price effects across time and households
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4.3.1 Clustering algorithm for consumption profiles

We use k-means clustering to group zip codes according to their electricity consump-
tion profiles. Recall that we observe zip code-level consumption for each hour from July
2021 until June 2023. Clustering based on untransformed electricity consumption would
be somewhat uninformative, as the resulting separations would be driven primarily by
differences in the population sizes of zip codes. Instead, the main variables included in
our clustering algorithm are hour-by-month consumption “shares” calculated as follows:

€x.h,m

Szhym = T )
62?

where €, is the average electricity consumption for zip code z, in hour-of-day h €
[1,...,24], and month-of-year m € [1,...,12]; and €, is the unconditional average hourly
consumption of a given zip code. This results in a total of 24 x 12 = 288 shares for
each zip code. These shares mute the level differences between zip codes, while retaining
seasonal and intraday variations in electricity consumption.

We also include average consumption by number of households and average by num-
ber of electricity contracts, both to capture differences in intensity of electricity usage.
In terms of weather variables, we include province-level min., max., and median temper-
ature averages by month-of-year. To account for geographic differences, we include min.
and max. altitudes at the province level. Finally, the algorithm also incorporates zip
code-level indicators for the degree of urbanization. In total, the clustering is based on
375 variables.

We test the performance of clustering algorithms that construct 1 to 20 groups of zip
codes. We aim to find the “optimal” number of groups that reduces the dimensionality of
our data while retaining meaningful and interpretable heterogeneity in energy consump-
tion profiles. To assess performance, we compute the total within-cluster sum of squares
(Krzanowski and Lai, 1988) and the average “silhouette” score or width (Rousseeuw,

9 We determine the optimal number of

1987) resulting from each cluster allocation.?
clusters to be 6.

Table 5 provides some descriptive statistics for the zip codes allocated to each of the 6
clusters. Consumption profiles are presented in Figure 8, where Panel (a) plots the average
consumption of households by hour of the day, and Panel (b) plots average consumption
by month of year. Figures on the left correspond to demand in levels (kWh per household-
year), while figures on the right depict demand shares. The demand patterns should be

interpreted alongside the map on Panel (c), which shows the geographic location of the

39The within-cluster sum of squares measures the similarity (distance) between observations and the “cen-
troid” of a given cluster. Lower values imply more similarity. The silhouette score is a metric that
incorporates both within- and between-cluster variability. Silhouette scores close to 1 imply high sepa-
ration and silhouette scores close to 0 indicate a high degree of overlap between clusters. Appendix D
presents more details about the clustering algorithm and the performance metrics.
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zip codes belonging to each cluster.

Table 5: Descriptive statistics of zip codes and households grouped in each cluster

Cluster 1 2 3 4 5 6 Full Sample
Electricity Cons. [kWh/year HH] 3131 3717 3294 3691 2625 2946 3229
Avg. Electricity Price [c€/kWh] 24.5 242 243 245 243 238 24.4
Income [k€/year. HH] 383 375 339 31.8 391 264 36.3
Household Size 2.5 2.5 24 2.6 24 2.3 2.5
Electric Heating [%)] 226 13.6 194 497 144 125 27.6
Air Conditioning [%] 614 335 22 716 102 19.8 50.5
Cities [%] 65.7 11.1 349 54.1 58.7 0 55.9
Towns & semi-dense areas [%] 255  36.1 40 358 253 144 29.6
Rural [%] 88 528 251 101 16 85.6 14.5
Min Temp. [°C] 1.7 0.5 2.1 5.2 2.8 0.2 2.8
Max Temp. [°C] 319 304 287 331 26.8 298 31
Number of zip codes 1762 1812 826 1304 1788 898 8390
Total households (thousands) 7008 889 1018 4331 2942 138 16325

Notes: All values are averages weighted by zip code population. The average electricity price is the
price faced by households in the Factual scenario depending on the timing of their consumption, with
different consumption patterns leading to different average prices.* The share of electric heating,
the share of air conditioning are based on province-level data or city-level data (for large cities).
Average min. and max. temperatures are based on province-level data. Average min. temperatures
correspond to those of the month of January, while average max. temperatures correspond to those
of the month of August.

%Tables A.1 and A.2 in the Appendix explore the determinants of household consumption and average
prices at the zip code level.

From the intraday patterns, we observe that households in Cluster 6 generally exhibit
lower electricity demand than those in any other cluster and tend to consume relatively
more electricity during periods when prices are lower. As shown in Table 5, these house-
holds are predominantly located in small rural zip codes. The demand peak observed in
Cluster 6 during August may be attributed to increased air conditioning usage.

Households in Cluster 5 also show relatively low electricity demand across all hours
of the day and throughout the year. However, their average electricity prices are more
closely aligned with the national average. The map indicates that Cluster 5 primarily
includes zip codes in Northern Spain, where the climate is milder and air conditioning is
seldom necessary, though some electric heating may be used during the winter months.

Cluster 4 is characterized by the highest electricity demand, particularly during
daytime hours and the summer months. Households in this cluster also face above-
average electricity prices. Notably, Cluster 4 includes some of the southernmost zip
codes in Spain, where extreme summer heat drives high air conditioning usage.

Cluster 1 comprises zip codes primarily located in central regions which also ex-

27



perience hot climates and significant AC usage, although with less pronounced summer
peaks than Cluster 4. These households similarly encounter above-average electricity
prices. Importantly, Cluster 1 includes several of Spain’s most populous and affluent
cities, such as Madrid and Barcelona.

Cluster 2 consists primarily of rural zip codes located in colder regions. Its electric-
ity consumption patterns resemble those of Cluster 5 (in the Northern region), though
Cluster 2 exhibits a more pronounced peak during the summer months. Cluster 3 also
includes colder zip codes, likely situated in more mountainous areas where access to gas
infrastructure is often limited. This may account for the cluster’s high electricity demand
during the winter months.

We conclude that the data-driven clustering algorithm yields a meaningful and in-
terpretable segmentation of households. In the following sub-sections, we estimate how
the impact of the energy crisis varied across clusters. Significant differences are to be
expected, given the variability in electricity prices and the extent to which demand is

influenced by climate and sociodemographic factors.
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Figure 8: Electricity consumption profiles across clusters and their geographic locations

Notes: Panels (a) and (b) show the average electricity consumption by hour of the day and by month of
year of Spanish households grouped in the six clusters. The left panels show the results in levels, while
the right panels show the consumption shares. Geo-locations belonging to each cluster are illustrated in
Panel (c).
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4.3.2 Distributional implications of the bill changes

We are now equipped to quantify the bill impacts of the energy crisis and associated

policy interventions across households depending on their location and income levels.

Across clusters and locations. As discussed above (and further studied by Reguant,
Fabra, and Wang, 2025), a household’s location is strongly correlated with its installed
electrical equipment (mainly electric heating and AC), which affects both the level and
the timing of electricity demand. Consistent with this, our clustering procedure groups
households located in similar areas, reflecting shared characteristics. The intensity of
the crisis and the mitigating effects of the interventions varied substantially across these
clusters. Table 6 reports estimates of these effects on households” annual bill, in absolute

terms and in percentage of their disposable income.

Table 6: Simulated Effects of the Energy Crisis and the Policy Interventions on
Household Electricity Bills (€/year, July 2021-June 2023)

Cluster n2 1 2 3 4 5 6 Full Sample
Energy Crisis 329.2 386 344  387.7 269.9 297.2 337.7
% of disp. income 0.91 1.09 1.04 1.27 0.71 1.16 0.99
Full Intervention -143.3  -174  -142.2 -176.2 -116.4  -146 -148.8
% of disp. income -0.40 -0.49  -0.43 -0.58 -0.31 -0.57 -0.44
Savings Intervention -54.6 -65.2 -58.6 -63.2 -47  -51.7 -56.3
% of disp. income -0.15 -0.18 -0.18 -0.21 -0.12 -0.2 -0.17
Price Intervention =779 -955 -726 -999 -604 -82.9 -81.3
% of disp. income -0.22  -0.27 -0.22 -0.33 -0.16 -0.32 -0.24

Notes: This table reports changes in annual household electricity bills resulting from the energy
crisis and the associated policy interventions, both in levels (€) and relative to households’
disposable income (%). The full-intervention effect includes both the savings-intervention
effect, the price-intervention effect, and their interaction.

In absolute terms, Clusters 4 and 2 were those who suffered from the largest bill
increase due to the crisis (+ €388 and + €386 /year) and who benefited the most from
the policy intervention (— €176 and — €174 /year). Yet in Cluster 4, which comprises
less wealthy zip codes located in the south of Spain, these effects represented a larger
share of households’ disposable income. At the other end, Cluster 5, which comprises
rather wealthy zip codes located in northern Spain, was relatively spared by the crisis
effect (+ €270/year, representing 0.7% of their disposable income) and benefited less
from the policy interventions (— €116/year).

Appendix Figures A.3 and A.4 further illustrate the distribution of these effects
across Spanish provinces. In absolute terms, both the crisis and the policy interven-

tions had stronger impacts in the south and east of Spain, while the mildest effects were
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observed in the north. Tarragona experienced both the largest increase in annual elec-
tricity bills due to the crisis (+ €425 /year) and the strongest relief from the intervention
(— €192/year). However, when measured relative to income, the southern provinces
were hit hardest. In Granada, Cérdoba, Jaén, and Toledo, the bill increase reached 1.4%
of households’ disposable income. These same regions also benefited most from the in-
terventions, with reductions amounting to as much as 0.6% of households’ disposable

income.

Across income bins. Households were affected by the crisis and policy interventions
to varying degrees depending on their income levels. We now assess the average bill
impact across income quintiles.

A key challenge is that our income data is only available at the zip code level,
which masks income heterogeneity among households within the same area. A nailve
approach would be to classify zip codes into national income quintiles based on their
average income.’ However, this method averages out within-zip code variation, leading
to a substantial underestimation of the gap between low- and high-income households, as
illustrated in Table 7. To more accurately capture the differentiated impacts of the crisis
and interventions across household-level income quintiles, some extrapolation beyond zip

code-level income data is needed.

Table 7: Average income per quintile: Household level or zip code level

Income Average Income Average Income
Quintile (household-level) (zip code-level)

1 9,481 24,773
2 17,980 30,945
3 25,622 35,457
4 34,926 40,022
5 57,485 50,316

Notes: This table reports average disposable income per household within each quintile, depending on
the level of aggregation used to construct the quintiles. At the household level, all individual households
in Spain are ranked by disposable income and grouped into five quintiles, within which the average
income is computed. At the zip code level, zip codes are ranked by the average income of their resident
households and grouped into five quintiles with equal total household population; average income is then
computed within each group using population weights. The average income by household-level income
quintile is obtained from Eurostat (2025) for the year 2020. The average income by zip code-level income
quintile is computed with the dataset described in Section 4.1.

To address this, we develop a procedure that models the relationship between income

and the estimated effects of the crisis and policy interventions that we observe at the zip

40We develop this alternative in Appendix A.2. Reguant, Fabra, and Wang (2025) show that such an
approach obscures much of the true distributional impact.
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code level, before extrapolating this relationship to fully reflect the household-level income
heterogeneity in Spain.*!

First, we assess the correlation between bill changes and the average income of
resident households in a given zip code ¢, while controlling for average household size, the
share of electric heating and air conditioning, and the degree of urbanization. Specifically,

we estimate the following regression:
log(ABill;) = 55 + Bi,log(Income;) + X, + €. (1)

Table 8 presents the results from estimating the model using the full sample of zip codes.
To allow for heterogeneity in the effects across different types of areas, we also estimate
the model separately for each cluster ¢ (Tables A.4—A.7 in the Appendix).

We find that household income is positively correlated with bill changes resulting
from the crisis and policy interventions, with relatively little variation across clusters. A
1% increase in average income is associated with a 0.4% higher bill increase on average,
ranging from 0.31% in cluster 1 to 0.52% in cluster 5. Similar magnitudes are observed
for the policy intervention effects, with coefficients ranging between 0.34% and 0.48%.
In addition, larger household size, higher shares of electric heating or air conditioning,
and zip code locations in towns or rural areas are all associated with greater bill impacts.
These patterns are consistent with higher average electricity consumption in such areas
(see Appendix Table A.1).

41Reguant, Fabra, and Wang (2025) propose a method to infer household-level income from zip code
aggregates using individual electricity consumption data. However, we cannot apply it here, as our
electricity data is also aggregated at the zip code level.
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Table 8: Determinants of the Crisis and Interventions Effects for households

Y = log(|ABill)) Energy-Crisis Full-Intervention Savings-Intervention Price-Intervention

effect effect effect effect
log(Income) 0.40*** 0.39*** 0.38*** 0.40***
(0.02) (0.02) (0.01) (0.02)
Household Size 0.27*** 0.27%** 0.27%* 0.28***
(0.02) (0.02) (0.02) (0.02)
Electric Heating 0.43** 0.46™** 0.38*** 0.51***
(0.02) (0.02) (0.02) (0.03)
Air Conditioning 0.32%* 0.36** 0.24** 0.46**
(0.02) (0.02) (0.01) (0.02)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.25*** 0.25%** 0.23*** 0.26™**
(0.01) (0.01) (0.01) (0.01)
Rural areas 0.29*** 0.31*** 0.28*** 0.33***
(0.01) (0.01) (0.01) (0.01)
(Intercept) 0.84*** 0.08 —0.70*** —0.71
(0.17) (0.17) (0.16) (0.17)
R? 0.27 0.29 0.24 0.34
Adj. R? 0.27 0.29 0.24 0.34
Num. obs. 8,390 8,390 8,390 8,390

Notes: ***p < 0.001; **p < 0.01; *p < 0.05. Each observation corresponds to one zip code. The dependent variable log(|ABill|) is the log of the
absolute increase in households’ annual bill in the zip code due to the crisis, or the log of the absolute decrease in households’ annual bill due to the
interventions. Income stands for the average disposable income per household per year, Household Size for the mean number of people per household.

Electric Heating and Air Conditioning denote the share of households with electric heating and air conditioning, respectively.



We next use the estimated models to extrapolate the effects across household-level
income quintiles. To compute the average effect for households in income quintile N,
we proceed as follows. First, for each zip code i, we simulate the counterfactual effect,
denoted Agz'\lljv, by assuming that the average income in zip code i equals the national
average income for quintile N. The objective is to estimate the change in household
bills for residents of zip code ¢ who belong to income quintile N, accounting for both the
income level of that quintile and other characteristics specific to zip code 7. To do so, we
use the estimated parameters 3§, 57,., and 3¢, depending on the corresponding cluster
¢ to which zip code i belongs. In this computation, we hold all control variables X; at
their observed values for zip code 7, replacing only the variable Income; with the national
average income for quintile N.

Equipped with these 8,390 x 5 (zip code X quintile) projected effects Agz\lljv , We
compute five national average effects Aéi\llN — one for each household income quintile N

— as follows: .
p— Z ABill; x pop;

—N
ABill =

where popY denotes the number of households in income quintile N residing in zip code 1,
and pop” is the total number of households in quintile N nationwide. This weighted av-
erage captures the national-level effect for households in income quintile N, appropriately
accounting for their geographic distribution across zip codes.

Figure 9 shows the average bill impacts across household income quintiles. The left
panel presents the effects in euros per year, while the right panel expresses them relative
to disposable income. As indicated by the red bars, the energy crisis raised annual
electricity bills by €292 for households in the first (lowest) income quintile — equivalent
to 3.1% of their disposable income. In contrast, households in the fifth (highest) income
quintile experienced an average increase of €565, corresponding to 1.0% of their income.

Absent policy interventions, these effects would have been significantly larger. The
mitigation effects of the price and savings interventions are shown by the blue and green
bars, respectively. Both were substantial, with a slightly larger share attributable to
the price intervention. Without the interventions, bills for the lowest-income households
would have increased by an additional €129, reaching a total impact of 4.45% of their
income. For the highest-income households, the interventions reduced bills by €244 in
absolute terms — roughly twice as much as in the first quintile, but this represented
only 0.4% of their disposable income. For these households, the total impact without
intervention would have been limited to 1.4% of their disposable income.

We note some differentiated effects of the crisis and policy interventions across in-
come quintiles, stemming from two main channels: (1) differences in aggregate electricity
consumption, and (2) differences in consumption patterns over time, which may align

positively or negatively with the timing of price changes. The larger absolute bill im-
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Figure 9: Crisis and policy intervention effects by household income quintile
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effect the crisis would have had in the absence of any policy interventions.
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pacts observed for higher-income households are primarily driven by the first channel, as
electricity consumption is strongly correlated with household income.

To assess the importance of the second channel, we examine the average electricity
price paid by households and how this price was affected by the crisis and policy inter-
ventions. The linear regression results in Appendix Table A.2 show that households in
higher-income zip codes tend to pay slightly higher average prices, and that these prices
increased marginally more during the crisis compared to lower-income areas. However,
the magnitude of these effects is economically small: a 1% increase in income is associated
with an absolute change in the average price paid of approximately 0.005%.

Therefore, we conclude that the larger bill increases observed among high-income
households were primarily driven by their higher levels of electricity consumption. How-
ever, bill increases were more burdensome for low-income households, as they represented
a larger share of their disposable income. In this sense, the energy crisis had regressive
effects.

Policy interventions partially mitigated these adverse effects. While low-income
households saw smaller absolute reductions in their bills, the relief was relatively larger
in proportional terms, given their lower incomes. Thus, the policy interventions had

progressive effects across the income distribution.

5 Conclusions

This paper quantifies the distributional impacts of the 2021-2023 energy crisis and
the associated policy interventions in Spain, analyzing effects at both the wholesale and
retail levels.

At the wholesale level, we employ electricity market simulations, combined with ma-
chine learning techniques for counterfactual demand prediction, to estimate the wealth
transfers induced by the crisis. We find that the surge in gas prices led to a sharp increase
in electricity prices, boosting the profits of inframarginal producers not directly affected
by the cost shock (nuclear, hydro, and renewable power plants). As a result, a signif-
icant share of surplus was redistributed from consumers to producers. Specifically, our
estimates indicate that the profits of Spanish electricity firms increased by approximately
€27 billion over the two-year duration of the energy crisis.

Policy interventions, such as the “Iberian Solution” and targeted energy-saving mea-
sures, mitigated part of this transfer by lowering wholesale prices, thereby reducing the
inframarginal gains by almost €13 billion and alleviating the financial burden on con-
sumers.

At the retail level, the energy crisis had regressive effects. While high-income house-
holds experienced larger increases in electricity bills in absolute terms due to higher

electricity consumption, the relative burden was greater for low-income households, for
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whom electricity expenditures represent a larger share of income. On average, households
in the lowest income quintile lost 3.1% of their disposable income due to higher electricity
bills — three times the relative burden experienced by households in the highest quintile.

Policy interventions, by contrast, exhibited progressive effects. Although the abso-
lute bill reductions were larger for higher-income households, the relief was proportionally
greater for lower-income groups. On average, households in the lowest income quintile
saw a reduction amounting to 1.4% of their disposable income — more than three times
larger than the relative benefit received by those in the highest quintile.

Finally, regional disparities in equipment ownership — such as electric heating and
air conditioning — amplified the effects due to income differences. Southern Spain, where
such technologies are more prevalent and where household income is below the national
average, was more severely impacted by the crisis but also benefited relatively more from
the interventions.

Our findings highlight the importance of incorporating distributional considerations

into the design of crisis response policies.
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A Additional Results

Figure A.1: Validating the Simulation Model
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Notes: The figure displays the historic prices in the Spanish electricity market versus the simulated ones

under the Factual scenario.
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Figure A.2: Retail prices in the retail market: futures & spot vs. non-regulated retail
tariffs
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Notes: The figure displays the trajectory of the energy component of non-regulated retail tariffs (solid
lines) — excluding distribution and transmission charges, as well as taxes — compared to spot (dotted
line) and futures prices (dashed line). The data reveal that the rise in spot prices during the crisis was
largely reflected in futures prices and, subsequently, in retail tariffs. Nevertheless, the compression of
retail margins suggests that suppliers absorbed part of the cost increase.
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A.1 Descriptive statistics across zip codes

Table A.1: Determinants of household electricity consumption

Y = log(Electricity Cons.) (1) (2)
log(Income) 0.067***  0.396***
(0.013)  (0.015)
Household Size 0.439***  0.276***
(0.017)  (0.016)
Electric Heating 0.426***
(0.024)
Air Conditioning 0.288***
(0.015)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.243***
(0.008)
Rural areas 0.290***
(0.011)
(Intercept) 6.292***  3.187***
(0.146)  (0.162)
R? 0.080 0.265
Adj. R? 0.080 0.264
Num. obs. 8393 8392

Notes: ***p < 0.01; **p < 0.05; *p < 0.1. Each observation
corresponds to one zip code. The dependent variable is the
log of the average electricity consumption in the zip code ex-
pressed in kWh per household per year. Income stands for
the mean disposable income per household per year, House-
hold Size for the mean number of people per household. Flec-
tric Heating and Air Conditioning denote the share of house-
holds with electric heating and air conditioning, respectively.
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Table A.2: Determinants of the average electricity price paid by households

Average Price [€/MWHh]
(1) log(p)  (2) log(Ap) (3) log(=Ap)  (4) log(=Ap)  (5) log(—Ap)

log(Income) 0.005*** 0.007*** —0.003 0.009** —0.103***
(0.001) (0.001) (0.003) (0.003) (0.003)
Household Size —0.004***  —0.005*** —0.003 0.000 —0.026"**
(0.001) (0.001) (0.003) (0.004) (0.003)
Electric Heating 0.007*** 0.005*** 0.067*** 0.082*** —0.082***
(0.001) (0.002) (0.005) (0.006) (0.005)
Air Conditioning 0.013*** 0.026*** 0.145%** 0.175%** —0.102%**
(0.001) (0.001) (0.003) (0.003) (0.003)
Degree of urbanization (ref.: Cities)
Towns and semi-dense  0.001*** 0.006*** 0.011*** 0.014*** —0.019***
(0.000) (0.001) (0.002) (0.002) (0.001)
Rural areas —0.003*** 0.003*** 0.034*** 0.041*** —0.020"**
(0.000) (0.001) (0.002) (0.002) (0.002)
(Intercept) 5.449*** 4.658*** 3.254*** 3.008*** 2.171%**
(0.006) (0.014) (0.033) (0.037) (0.031)
R2 0.162 0.089 0.396 0.427 0.353
Adj. R? 0.161 0.089 0.396 0.426 0.353
Num. obs. 8392 8392 8392 8392 8392

Notes: *p<0.1; **p<0.05; ***p<0.01. Each observation corresponds to one zip code. The dependent
variables are logs of (1) the average electricity price paid by households in the Factual scenario, (2)
the change in this average price due to the crisis relative to the Factual scenario, and the change
in this average price relative to the Factual scenario due to (3) the full-intervention effect, (4) the
savings-intervention effect, (5) the price-intervention effect. Income stands for the average disposable
income per household per year, Household Size for the mean number of people per household. FElectric
Heating and Air Conditioning denote the share of households with electric heating and air conditioning,
respectively.

Table A.3: Households responsiveness to electricity prices across social classes

Upper Class / Middle Lower Lower

Middle Upper Class Class  Middle Class Class Total
Have you changed your electricity consumption habits in the last twelve months
following the information campaigns on bill changes?
Yes 56,5% 57,9% 55,3% 56,3% 56,8%
No, I have not changed them 40,8% 38,3% 40,1% 35,9% 39,4%
I was not aware of the bill changes 2,7% 3,9% 4,6% 7.8% 3, 7%

Do you take into account the difference in prices at different times of the day in
your consumption habits, for example, to put on the washing machine or turn on the
electric heating or air conditioning?

Yes, quite a lot 40,9% 41,6% 41,5% 33,5% 41,0%
Yes, a little 25,6% 24,1% 26,4% 38,3%  25,7%
No 33,4% 34,2% 32,0% 28,3% 33,3%

Notes: Survey conducted in the first half of 2022 among 4,907 households located in continental Spain
(5000 households in the whole country). *At that time, the regulated market in Spain exposed consumers
to real time pricing, i.e., the the hourly wholesale market price 4 fees and taxes. Source: BELab. Banco
de Espania Data Laboratory, Panel de Hogares CNMC. DOI: 10.48719/Belab.CNMC.PH1922 02, 2025,
own calculations.
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Figure A.3: Energy-crisis effect on household bills by province

(a) Bill increase in level [€/year] (b) Bill increase relative to income [%)]

Notes: The maps depict the average effect of the crisis on households’ bills in each province expressed
in (a) absolute level in €/year and in (b) percentage of households’ disposable income.

Figure A.4: Full-intervention effect on household bills by province

(a) Bill decrease in level [€/year] (b) Bill decrease relative to income [%]

Notes: The maps depict the average effect of the policy intervention (price intervention and energy sav-
ings) on households’ bills in each province expressed in (a) absolute level in €/year and in (b) percentage
of households’ disposable income.



Online Appendix Fabra, Leblanc, and Souza (2025)

Figure A.5: Average electricity consumption and income per household

(a) Electricity Consumption [kWh/year] (b) Disposable Income [€/year]

Notes: The maps depict the average per-household electricity consumption in kWh/year (a) and dispos-
able income in €/year (b), for each province.



Table A.4: Energy-crisis effect and household characteristics within each cluster

Y =log(ABill) Full Sample Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
log(Income) 0.40"* 0.36** 0.43** 0.39* 0.45** 0.52** 0.35"*
(0.02) (0.03)  (0.05)  (0.06)  (0.04)  (0.04)  (0.10)
Household Size 0.27+ 0.26™* 0.18* 0.12 0.24™ 0.40*** —0.06
(0.02) (0.03)  (0.04)  (0.06)  (0.04)  (0.04)  (0.08)
Electric Heating 0.43** 0.40** —0.24 0.30** 0.28** 0.46* —1.49*
(0.02) (0.06)  (0.14)  (0.11)  (0.10)  (0.10)  (0.32)
Air Conditioning 0.32%** 0.09 0.73*** 0.31%** 0.16 0.29*** 0.44*
(0.02) (0.06)  (0.07)  (0.05)  (0.09)  (0.07)  (0.17)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.25"* 0.25"* 0.26™ 0.21 0.29** 0.04*
(0.01) (0.01)  (0.03)  (0.03)  (0.02)  (0.02)
Rural areas 0.29** 0.29** 0.33** 0.25"* 0.25"** 0.20"*  —0.27"
(0.01) (0.02)  (0.04)  (0.03)  (0.03)  (0.03)  (0.06)
(Intercept) 0.84* 1.38%* 0.85 1.57* 0.67 —0.57 2.76™
(0.17) (0.30)  (0.48)  (0.64)  (043)  (0.42)  (0.98)
R? 0.27 0.25 0.26 0.18 0.20 0.16 0.06
Adj. R? 0.27 0.25 0.26 0.18 0.19 0.15 0.06
Num. obs. 8390 1762 1812 826 1304 1788 898

Notes: ***p < 0.001; **p < 0.01; *p < 0.05. Each observation corresponds to one zip code. The dependent variable log(ABill) is the log of

the absolute increase in households’ annual bill in the zip code due to the crisis. Income stands for the mean disposable income per household

per year, Household Size for the mean number of people per household. Flectric Heating and Air Conditioning denote the share of households

with electric heating and air conditioning, respectively.
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Table A.5: Full-intervention effect and household characteristics within each cluster

Y =log(—ABill) Full Sample Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
log(Income) 0.39** 0.37** 0.41 0.35** 0.44** 0.47%* 0.38**
(0.02) (0.03) (0.05) (0.06) (0.04) (0.04) (0.10)
Household Size 0.27* 0.28** 0.10* 0.16** 0.21%* 0.41*** —0.14
(0.02) (0.03) (0.04) (0.06) (0.04) (0.04) (0.08)
Flectric Heating 0.46"* 0.34** —0.44* 0.28** 0.30** 0.39**  —1.62"
(0.02) (0.06) (0.14) (0.11) (0.10) (0.10) (0.32)
Air Conditioning 0.36"* 0.10 0.77% 0.29** 0.09 0.48** 0.48™
(0.02) (0.06) (0.06) (0.05) (0.09) (0.07) (0.18)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.25" 0.23* 0.27 0.20™ 0.29* 0.05*
(0.01) (0.01) (0.03) (0.03) (0.02) (0.02)
Rural areas 0.31** 0.28** 0.32%* 0.26** 0.24** 0.23"*  —0.23"
(0.01) (0.02) (0.04) (0.03) (0.03) (0.02) (0.06)
(Intercept) 0.08 0.48 0.41 0.93 0.09 —0.97* 1.93
(0.17) (0.30) (0.47) (0.63) (0.44) (0.41) (0.99)
R? 0.29 0.23 0.25 0.19 0.18 0.18 0.06
Adj. R? 0.29 0.23 0.25 0.19 0.18 0.18 0.06
Num. obs. 8390 1762 1812 826 1304 1788 898

Notes: ***p < 0.001; **p < 0.01; *p < 0.05. Each observation corresponds to one zip code. The dependent variable log(—ABill) is the log of the
absolute decrease in households’ annual bill in the zip code thanks to the full intervention (price intervention and energy savings intervention).
Income stands for the mean disposable income per household per year, Household Size for the mean number of people per household. FElectric

Heating and Air Conditioning denote the share of households with electric heating and air conditioning, respectively.
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Table A.6: Savings-intervention effect and household characteristics within each cluster

Y =log(—ABill) Full Sample Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
log(Income) 0.38** 0.34** 0.41 0.37** 0.44** 0.47%* 0.35"*
(0.01) (0.03) (0.05) (0.06) (0.04) (0.04) (0.10)
Household Size 0.27* 0.26** 0.15% 0.13* 0.24** 0.39** —0.04
(0.02) (0.03) (0.04) (0.06) (0.04) (0.04) (0.08)
Flectric Heating 0.38** 0.28** —0.35" 0.30** 0.34** 0.41%*  —1.41"
(0.02) (0.06) (0.14) (0.11) (0.10) (0.09) (0.30)
Air Conditioning 0.24* 0.05 0.70** 0.22%* 0.00 0.35%* 0.40*
(0.01) (0.05) (0.06) (0.05) (0.09) (0.06) (0.16)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.23** 0.23* 0.27 0.20™* 0.27 0.04*
(0.01) (0.01) (0.03) (0.03) (0.02) (0.02)
Rural areas 0.28** 0.28** 0.34** 0.24** 0.23** 0.20"*  —0.26"
(0.01) (0.02) (0.04) (0.03) (0.03) (0.02) (0.06)
(Intercept) —0.70* —0.12 —0.69 —0.08 —-0.91*  —1.78" 0.96
(0.16) (0.29) (0.46) (0.63) (0.43) (0.40) (0.93)
R? 0.24 0.23 0.25 0.16 0.18 0.16 0.06
Adj. R? 0.24 0.23 0.24 0.15 0.18 0.16 0.06
Num. obs. 8390 1762 1812 826 1304 1788 898

Notes: ***p < 0.001; **p < 0.01; *p < 0.05. Each observation corresponds to one zip code. The dependent variable log(—ABill) is the log of the

absolute decrease in households’ annual bill in the zip code thanks to the energy savings intervention. Income stands for the mean disposable

income per household per year, Household Size for the mean number of people per household. FElectric Heating and Air Conditioning denote

the share of households with electric heating and air conditioning, respectively.
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Table A.7: Price-intervention effect and household characteristics within each cluster

Y =log(—ABill) Full Sample Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
log(Income) 0.40** 0.39** 0.42%* 0.34** 0.45** 0.48** 0.40**
(0.02) (0.03) (0.05) (0.06) (0.04) (0.04) (0.11)
Household Size 0.28** 0.29** 0.07 0.18** 0.20%** 0.42%* —0.21*
(0.02) (0.03) (0.04) (0.06) (0.04) (0.04) (0.09)
FElectric Heating 0.51* 0.39"*  —0.49™ 0.27* 0.27** 0.36"*  —1.84™
(0.03) (0.06) (0.14) (0.11) (0.10) (0.10) (0.34)
Air Conditioning 0.46** 0.13* 0.83** 0.35** 0.16 0.57* 0.54*
(0.02) (0.06) (0.07) (0.05) (0.10) (0.07) (0.19)
Degree of urbanization (ref.: Cities)
Towns and Semi-dense areas 0.26™ 0.23* 0.26™ 0.21 0.30™** 0.06™
(0.01) (0.02) (0.03) (0.03) (0.02) (0.02)
Rural areas 0.33** 0.28** 0.30** 0.27** 0.24** 0.25%* —0.21*
(0.01) (0.02) (0.04) (0.03) (0.03) (0.03) (0.07)
(Intercept) —0.71% —0.44 —0.13 0.32 —0.52 —1.77 1.28
(0.17) (0.31) (0.47) (0.63) (0.46) (0.42) (1.06)
R? 0.34 0.23 0.26 0.22 0.18 0.20 0.07
Adj. R? 0.34 0.22 0.26 0.22 0.18 0.20 0.06
Num. obs. 8390 1762 1812 826 1304 1788 898

Notes: ***p < 0.001; **p < 0.01; *p < 0.05. Each observation corresponds to one zip code. The dependent variable log(—ABill) is the log

of the absolute decrease in households’ annual bill in the zip code thanks to the price intervention. Income stands for the mean disposable

income per household per year, Household Size for the mean number of people per household. FElectric Heating and Air Conditioning denote

the share of households with electric heating and air conditioning, respectively.
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Online Appendix Fabra, Leblanc, and Souza (2025)

A.2 Distributional Consequences — zip code-level approach

As an alternative to the approach developed in Section 4.3.2, we consider another
approach that do not rely on any extrapolation and provides a lower bound of the gaps in
crisis and intervention effects across income bins. We cannot directly group households
into quintiles and estimate the effects on each group because we do not have household-
level data. Thus, we instead group zip codes in quintiles of equal population (number of
households) according to the average income of resident households, as depicted on the
left column in Table 7. Then we compute the average effect of the crisis, the average
effect of the price intervention and the average effect of the savings intervention for each

zip code-level income quintile. The results are depicted in Figure A.6.

Table A.8: Summary statistics per zip code-level income quintile

Income Quintile Q1 Q2 Q3 Q4 Q5 Full Sample
Electricity Cons. [kWh/year. HH] 3,332 3,267 3,097 3,063 3,385 3,229
Income KEUR/year.HH] 248 309 355 40.0 50.3 36.3
Household Size 2.5 2.5 2.5 2.5 2.5 2.5
Electric Heating [%] 36.7 338 236 231 205 27.6
Air Conditioning [%)] 549 519 46.3 48.8 50.8 50.5
Cities [%] 190 464 629 715 79.7 55.9
Towns & semi-dense areas [%] 38.1 398 29.1 231 18.0 29.6
Rural [%] 429 138 80 55 23 14.5
Min Temp. [°C] 37 37 24 21 18 2.8
Max Temp. [°C] 325 31.1 303 305 305 31.0
Number of ZIP codes 4,659 1,526 912 740 556 8,393
Total Households (thousands) 3261 3,268 3,229 3295 3271 16,325

Notes: All values are averages weighted by zip code population. The share of electric heating, the
share of air conditioning are based on province-level data or city-level data (for large cities). Average
min. and max. temperatures are based on province-level data. Average min. temperatures correspond
to those of the month of January, while average max. temperatures correspond to those of the month
of August.

The differences between income quintiles at the zip code level are relatively small
in absolute terms. Households in zip codes in the second and third quintiles experienced
the largest impact of the crisis, with their average bill increasing by 356 €. However,
this increase was only marginally higher than the smallest increase of 314 € experienced
by households in zip codes in the 1st quintile. Similarly, the total average effect of the
interventions ranged only from 170 € to 191 € across zip code income quintiles. Yet,
when these bill variations are related to average disposable income of households, the

effects of the crisis and the interventions appear more contrasted across quintiles. The
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Figure A.6: Crisis and policy intervention effects by zip code-level income quintile
bill increase due to the crisis represented a share of their disposable income twice larger
on average for households living in zip codes in the 1st quintile than for households living

in zip codes in the 5th quintile. In addition, we must bear in mind that this gap is only

a lower bound of the actual differences across (household level) income quintiles.
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B Counterfactual simulation inputs

B.1 Natural Gas and CO, Prices

As a direct input to our simulation of the Spanish electricity market, we consider
the reference price of gas on the Iberian market, that is the MIBGAS price. However, we
use the TTF price as a predictor when assessing the indirect effect of the crisis through
the CO4 price, considering that the TTF price is the most relevant for most of the area
covered by the EU-ETS.

We collect daily data from 2015 to 2023 that we aggregate at the monthly level. We
build counterfactual natural gas prices for the period July 2021 - June 2023 by applying
for each month the average price for the same month over the period 2017-2019 (e.g.
January will take the average of prices observed in January 2017, January 2018, and
January 2019). This allows us to preserve the seasonality of natural gas prices in the
counterfactual scenario.

In order to build counterfactual COq prices, we estimate the linear regression model
below, capturing the effect of natural gas price (TTF) on COs prices, while allowing for
different linear time trends in different periods of the EU-ETS:

log(CO; price,) = log(TTF price,) + trend - factor(EU-ETS period), (B.1)

The index ¢ denotes months of the period 2015-2023, and “factor(EU-ETS period)” de-
notes a categorical variable dividing the time period into four periods (A, B, C, and D)
according to major policy shocks that affected the EU-ETS. Namely, the breakdown is

based on the following events:

A—B: January 2016: Announcement of free allocation of allowances from the new entrants
reserve (see climate.ec.europa.eu/news-your-voice /news/commission-publishes-status-

update-new-entrants-reserve-2016-01-15_en)

B—C: January 2018: Market Stability Reserve amended by Directive (EU) 2018/410 so
that a certain amount of permits inside the reserve would be canceled from 2023

onward (Directive passed on the 14 March 2018 but expected earlier)

C—D: January 2021: Beginning of phase IV of the ETS

B.2 Counterfactual electricity prices in France

To construct a set of counterfactual electricity prices in France under the No-FEnergy-
Crisis scenario, we first estimate a linear model that explains electricity prices as a

function of the natural gas price (TTF), the COy price, electricity demand in France net
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Y = log(CO2 price) [EUR/t)
log(TTF price) [EUR/MWHh] 0.18%**
(0.03)
EU-ETS Period (ref.: Period A)
Period B —0.39**
(0.15)
Period C —0.35**
(0.16)
Period D 0.55**
(0.23)
trend x Period A 0.02
(0.01)
trend x Period B —0.01
(0.01)
trend x Period C 0.01
(0.01)
trend x Period D —0.00
(0.01)
(Intercept) 1.37%**
(0.14)
R? 0.98
Adj. R? 0.98
Num. obs. 108

***p < 0.01; **p < 0.05; *p < 0.1

Table B.1: Linear model of monthly COs prices (2015-2023)

of renewable and nuclear production (Net Load), a quadratic term of Net Load, interaction
terms between gas and CO, prices and Net Load, as well as fixed effects for the month
of the year and the hour of the day.

We include Net Load as an explanatory variable to account for the non-dispatchable
nature of renewable generation (comprising wind, solar, and run-of-river hydro) and the
limited flexibility of nuclear generation.

The model is estimated on hourly data spanning from 2015 to 2023. Estimation
results are reported in Table B.1. The model explains a substantial share of the variance
in electricity prices (R? = 0.9), and both gas and CO, prices are found to have a strong
influence on electricity prices in France.

In the second step, we use the estimated model to predict electricity prices in France
for the period from July 2021 to June 2023 under the No-Energy-Crisis scenario (see Fig-
ure 3). Specifically, we assume TTF gas prices are equal to the monthly average observed

during 2017-2019 and use the counterfactual CO, price series described in Appendix B.1.
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Y = French Electricity Price [EUR/MWHh]
Net Load [GW] 0.4355**
(0.0347)
(Net Load [GW])? 0.0027
(0.0023)
TTF Price [EUR/MWHh] 1.0580%**
(0.0065)
COgy Price [EUR/t] 0.5293***
(0.0061)
Net Load [GW] x TTF Price [EUR/MWH] 0.0439"**
(0.0011)
Net Load [GW] x COg Price [EUR/1] 0.0151***
(0.0008)
(Net Load [GW])? x TTF Price [EUR/MWHh] 0.0032***
(0.0001)
(Net Load [GW])? x COg Price [EUR/t] —0.0022***
(0.0001)
(Intercept) 10.6258%*
(0.7028)
R 0.9050
Adj. R2 0.9050
Num. obs. 77978

***p < 0.001; **p < 0.01; *p < 0.05

Table B.1: Linear model estimates for prediction of French electricity prices
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C Predicting counterfactual electricity demand

C.1 Key assumptions for counterfactual predictions

Let Y; denote aggregate electricity demand in hour £. Building on the Neyman-
Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974), let Y;(0) represent

the potential outcome if the crisis had not happened. Then we assume:

Assumption 1. There exists a “stable” regression function g() that drives no-crisis coun-

terfactual aggregate electricity demand.

Y,(0) = g(X4(0)) + &

(Asm. 1)
such that E[Y;(0)|X:(0)] = g(X.(0)) ,

where X, is a vector of variables observed by the researcher, and €; is an idiosyncratic

error term.

We refer to g() as being a “stable” function in the sense that it explains potential
outcomes Y;(0) both before and during the crisis. Let pre denote time periods before the
energy crisis, and post denote time periods during the crisis. Ultimately, we are interested
in predicting Yp,s:(0) (i.e., demand during the crisis period under a counterfactual as if
the crisis had not happened). In reality, we only observe Y,.(0), X,.(0), ¥post(1), and
Xpost(1). One complication is that, naturally, the predictor variables themselves might

change during the crisis (X,,e # X,0st). This warrants another assumption, namely:

Assumption 2: The predictor variables are independent of the energy crisis.

Taken together, assumptions 1 and 2 imply:

E[Yp0st (0) Xpost (0)] = 9(Xpost (0)) = 9(Xpost) - (C.1)

We train flexible machine learning algorithms using pre-crisis data (Y}..(0) and
X,re(0)), aiming to estimate the counterfactual function g(). Given this function, the
counterfactual of interest can then be predicted as: }A/post(O) = §(Xpost). More specifically,
we use hourly electricity demand data from 2015 to 2020 to estimate ¢(), where the

outcome variable is aggregate hourly electricity demand in Spain.

C.2 Machine learning algorithms

For estimating the counterfactual function g(), we build on recent advances from
the machine learning literature, both in regards to (i) ML algorithms and to (ii) cross-

validation strategies.
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We focus on tree-based machine learning algorithms. A nice feature of regression
trees is that they inherently allow for non-linear relationships between the covariates and
the outcome of interest. This is because, by design, the continuous covariates are trans-
formed into categorical covariates through “branch splits.” Also, interactions between
variables can be easily incorporated by increasing the tree “depth” (i.e., the number of
nodes at which branching is considered/allowed). Our algorithm of choice further mod-
els complexity in a data-driven manner by combining many “simple” trees into a single
predictor via gradient boosting (Friedman, 2002).*? Specifically, we implement XGBoost
(Chen and Guestrin, 2016). We consider several configurations of the algorithm by vary-
ing: the minimum observations per terminal node; the maximum tree depth; the learning
rate (which adjusts the weights assigned to each tree); and the total number of trees. The
best performing configuration is selected via 4-fold cross-validation (CV), which allows
us to assess out-of-sample prediction performance.?3

We complement the 4-fold CV strategy with time series cross-validation (Hyndman
and Athanasopoulos, 2018), which can be viewed as a form of ‘placebo’ test. We train
our algorithm with data from 2015 to 2018, and assess its performance for 2019 to 2023.
Results from that exercise are presented in Appendix Figure C.1. We show that predic-
tion accuracy is high during all of 2019, which lends validity to our algorithm of choice.
Performance in 2020 onward drops significantly, as expected due to the COVID-19 pan-
demic and later due to the energy crisis. During crisis periods, the model trained with
data from 2015 to 2018 results in counterfactual predictions that are substantially higher
than those from our baseline model (trained with data from 2015 to 2020). This suggests
that the 2020 data might be particularly useful for the algorithm to capture potential

structural demand changes triggered by the pandemic. Below, we provide further details.

C.3 Tuning and cross-validation for aggregate electricity de-

mand

We implement 4-fold cross-validation for hyperparameter tuning of the XGBoost
algorithm. As shown in Table C.1, we consider configurations that vary in the num-
ber of trees, maximum tree depth, shrinkage/learning rate, and minimum observations
per terminal node. A total of 18 configurations were tested for a model to predict ag-

gregate electricity demand. For training, we use data from 2015 to 2020. The last

42The algorithm starts with one (randomly defined) regression tree, then iteratively adds more trees to an
ensemble model, assigning more weights to the trees that improve predictive performance (more details
in Appendix C.2).

43We randomly split our sample into 4 equally sized sub-samples, use three of those to train the ML
algorithm, and then test prediction accuracy in the fourth (hold-out) sub-sample. The process is repeated
four times, such that all folds serve once as the hold-out sub-sample. We then select the configuration
that results in the lowest root-mean squared error (RMSE) in the hold-out sub-samples (more details in
Appendix C.2).
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two columns of Table C.1 present the in-sample root-mean-squared errors (RMSE) and
the cross-validated RMSE for each configuration. As expected, the in-sample errors are
substantially lower than out-of-sample errors. The best-performing algorithm, based on
having the lowest CV RMSE, is identified as Model ID 17 in the table. We use that
configuration for our couterfactual predictions shown in Section 3.1.

We also implement time series cross-validation to assess performance of our preferred
algorithm (Hyndman and Athanasopoulos, 2018). For this, we train the model with data
from 2015 to 2018, then assess prediction performance in 2019 and beyond. As shown in
Figure C.1, comparing predictions with historic consumption, the model is accurate for
2019 and early 2020. We conclude that the model performs well in predicting demand
for counterfactual scenarios without significant structural changes. Given the richness of
the controls included, and under the assumptions stated in Section 3.1, the discrepancies
between real and predicted demand observed from 2020 onward may be attributed to

unexpected crises (COVID and the energy crisis itself).

Table C.1: Hyperparameter tuning — aggregate demand

Model ID  Number of Trees Max. Tree Depth Shrinkage Min. Obs. per Node In-sample RMSE CV RMSE

1 2,000 5 0.1 10 307.50 534.62
2 2,000 10 0.1 10 30.46 490.39
3 2,000 5 0.2 10 208.53 528.43
4 2,000 10 0.2 10 4.06 532.76
5 2,000 10 0.1 5 14.97 509.99
6 3,000 10 0.1 5 4.00 509.73
7 2,000 20 0.1 5 0.01 514.93
8 3,000 20 0.1 5 0.01 514.93
9 3,000 10 0.1 10 11.57 485.83
10 2,000 20 0.1 10 0.90 471.20
11 3,000 20 0.1 10 0.74 471.20
12 2,000 10 0.1 20 64.28 468.64
13 3,000 10 0.1 20 34.30 466.83
14 2,000 20 0.1 20 5.99 435.19
15 3,000 20 0.1 20 2.50 435.14
16 3,000 30 0.1 20 1.94 438.85
17 3,000 20 0.1 30 5.71 434.33
18 3,000 30 0.1 30 3.83 435.86

Notes: Tuning hyperparameters for XGBoost (Chen and Guestrin, 2016). The outcome is aggregate
electricity demand in Peninsular Spain. Cross-validated (CV) errors are based on 4-fold cross validation.
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Figure C.1: Time series cross-validation — aggregate electricity demand
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Notes: This figure illustrates the historical and predicted counterfactual Spanish aggregate electricity
demand from Jan. 2019 to Dec. 2023. Predictions in red are from an algorithm trained with data from
2015 to 2020. Predictions in purple are from a model trained only with data from 2015 to 2018.
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C.4 Tuning and cross-validation for low voltage electricity de-

mand

We also implement 4-fold CV for tuning the algorithm for prediction of low voltage
electricity demand. Results are presented in Table C.2. For this case, Model ID 10 is
considered the best performing, based on having lowest CV RMSE. Results are generally

consistent with those reported in the subsection above (for aggregate electricity demand).

Table C.2: Hyperparameter tuning — low voltage demand

Model ID  Number of Trees Max. Tree Depth Shrinkage Min. Obs. per Node In-sample RMSE CV RMSE
1 2,000 5 0.1 10 218.09 362.75
2 2,000 10 0.1 10 17.26 297.51
3 2,000 5 0.2 10 127.21 336.82
4 2,000 10 0.2 10 2.39 323.24
5 3,000 10 0.1 10 6.29 295.31
6 3,000 20 0.1 10 0.12 297.62
7 3,000 10 0.1 20 21.28 285.88
8 3,000 20 0.1 20 1.40 274.12
9 3,000 10 0.1 30 33.22 283.74
10 3,000 20 0.1 30 3.31 266.39

Notes: Tuning hyperparameters for XGBoost (Chen and Guestrin, 2016). The outcome is low voltage
electricity demand in Peninsular Spain. Cross-validated (CV) errors are based on 4-fold cross validation.

Figure C.2: Time series cross-validation — low
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C.5 Traffic fatalities as a proxy for mobility intensity

We include monthly road traffic fatalities in our set of control variables to predict
counterfactual electricity demand in Spain. Mobility by cars is not expected to directly
influence electricity consumption in Spain, given the relatively low adoption of electric
vehicles. However, an indirect relationship may arise, to the extent that a lack of mobility
implies more people staying at home. We find that the patterns observed in traffic
fatalities closely match the COVID-19 lockdown periods. As shown in Figure C.3, the
seasonality patterns in fatalities were remarkably stable in Spain from 2015 to 2023, except
during lockdown periods. The red curve in the Figure reveals that a simple regression
specification with month-of-year fixed effects performs well in predicting fatalities.

We therefore argue that this measure can serve as a proxy for urban mobility. For the
case of low-voltage demand, the correlation between mobility and electricity consumption
is most likely negative (as lockdown restrictions may increase electricity at home). This
relationship may be confounded by the fact that some small commercial establishments
also use low-voltage electricity. Yet, we noted an improvement in cross-validated RMSE
after the inclusion of traffic fatalities in our models, especially in those to predict resi-
dential demand (results without this control can be made available upon request). The
improvements for predicting aggregate (residential plus industrial) electricity demand

were negligible.

Figure C.3: Time series of road traffic fatalities in Spain
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Notes: The predictions in red are based on a simple regression with month-of-year fixed effects plus a
constant, estimated with data from 2015 to 2019 (pre-crisis).
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D Clustering algorithm and performance metrics

D.1 K-means clustering

For the clustering algorithm, we consider each zip code of Peninsular Spain as the
unit of observation, aggregating our key variables of interest to that level. As described
in the main text, the key variables used for clustering capture seasonal and intraday
electricity demand patterns. We implement k-means clustering with a final sample of
8,930 zip codes and 375 variables. The objective is to partition the zip codes into clusters,
minimizing the within-cluster sum of squares (WCSS).

Let z denote the set of zip code observations, where each observation is a vector
of dimension 375 (the number of variables). We partition the zip codes into 6 clusters

(optimal according to the performance metrics) C = {C}, Cy, ..., Cs}, such that:

argmmzz Iz — w2

k=1 zeC}, (Dl)

where py = Z

zeCk

Note that |C| is the number of zip codes in cluster Cy, and py is the centroid of
the cluster. We implement k-means clustering via the ClusterR package (Mouselimis,
2024; Frey and Dueck, 2007), initializing the algorithm with 5 different centroid seeds

and keeping all other options at their default values.

D.2 Clustering performance metrics

One standard performance metric for clustering is the total within-cluster sum of
squares. That simply consists of a summation, over all clusters, of the values resulting
from the minimization problem in (D.1). However, we are also interested in analyz-

ing the degree of separation between clusters. We therefore calculate silhouette scores

(Rousseeuw, 1987). Let
a, = ‘ Ck Z d(z,1)

1€Ck zF#1
where d(z,1) is the Euclidean distance between zip code z and all other zip codes i
belonging to the same cluster C. Smaller values of a, would indicate more similarity

between the points contained in Cj. Additionally, let

bZ d ) j )
e Ten —12 (2.9)
JjeC
where d(z,j) is the distance between zip code z and all zip codes j from the nearest
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neighboring cluster Cj. Higher values of b, imply lower similarity between zip code z and

points from its neighboring cluster. Finally, the silhouette score or width is defined as

1—‘;—; if a, <b,,
S, =40 ifazzbz,

b1 ifa, >b,.

az

Values of s, close to 1 indicate high degree of separation between z and observations
from other clusters. When s, is 0, then zip code z is on the border of two clusters. If
s, is negative, then the zip code may have been allocated to the incorrect cluster (as it
matches better with observations in the neighboring cluster). After computing silhouette
scores for all 8,930 zip codes in our sample, we take the average.

Results for total within-cluster sum of squares are presented in Panel (a) of Figure
D.1, while average silhouette scores are in Panel (b). We note that the total within-
cluster sum of squares (Panel a) decreases as the number of clusters increases. There
is a noticeable sharp decrease when moving from 6 to 7 clusters. However, the average
silhouette scores reveals that any improvements beyond 6 clusters come at the expense
of higher cluster overlap (or lower separation). Therefore, for the main analyses in our

paper, we use 6 clusters to summarize the distributional consequences of the energy crisis.
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Total Within—Cluster Sum of Squares (million)
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(a) Total within-cluster sum of squares by number of clusters
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(b) Average silhouette scores by number of clusters

Figure D.1: Performance metrics to determine optimal number of clusters
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